Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Wk 40 Electronics Supply Chain Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

    Stackpole Offers High Voltage Plate Resistors up to 40KV

    How to Manage Supercapacitors Leakage Current and Self Discharge 

    Qualification of Commercial Supercapacitors for Space Applications

    Experimental Evaluation of Wear Failures in SMD Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Wk 40 Electronics Supply Chain Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

    Stackpole Offers High Voltage Plate Resistors up to 40KV

    How to Manage Supercapacitors Leakage Current and Self Discharge 

    Qualification of Commercial Supercapacitors for Space Applications

    Experimental Evaluation of Wear Failures in SMD Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

TDK EMC Components:High-impedance chip beads with lowest DC resistance

30.8.2017
Reading Time: 2 mins read
A A

RelatedPosts

Wk 40 Electronics Supply Chain Digest

Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

Electrolyte Selection and Performance in Supercapacitors

source: TDK news

TDK Corporation announced the development of the MMZ0402EUC series of chip beads, with the lowest DC resistance for a chip bead its size*.

The two new types with their respective impedance values of 150 Ω and 180 Ω at 100 MHz, feature DC resistance values of only 0.62 Ω and 0.69 Ω. This results in a significant reduction in power losses, while at the same time providing excellent noise suppression. In fact, the compact IEC 0402 components with dimensions of 0.4 mm x 0.2 mm x 0.2 mm feature an impedance that is up to 20 percent higher than TDK’s existing MMZ chip beads with the same DC resistance rating. Combined with their higher rated currents of 350 mA and 300 mA compared to existing types, the new MMZ0402EUC chip beads are ideally suited for noise suppression in the power and signal circuits of smartphones, tablets and other mobile devices. Mass production was launched in August 2017.

The improved ratio of impedance to DC resistance of the new series was achieved thanks to advanced TDK materials. The components can be used in a wide range of temperatures from -55 °C to +125 °C. TDK will continue to expand the available range of impedance values in the compact lineup to meet the requirements for a broad range of mobile device designs.

* As of August 2017, according to TDK research
Main applications

  • Smartphones, tablets, and other mobile devices

Main features and benefits

  • Lowest DC resistance for a chip bead of its size, with values as low as 0.62 Ω
  • Impedance of 150 Ω and 180 Ω at 100 MHz is up to 20 percent higher than that of existing chip beads with the same DC resistance
  • Compact dimensions of just 0.4 mm x 0.2 mm x 0.2 mm
  • Wide operating temperature range from -55 °C to +125 °C

Key data

Type Dimensions
[mm]
Impedance
[Ω] at 100 MHz typ.*
Impedance
[Ω] at 700 MHz typ.*
DC resistance
[Ω] max.
Rated current
[mA] max.
MMZ0402EUC151C 0.4 x 0.2 x 0.2 150 340 0.62 350
MMZ0402EUC181C 180 400 0.69 300

* Tolerance ±25%

Related

Recent Posts

Experimental Evaluation of Wear Failures in SMD Inductors

1.10.2025
33

Efficient Power Converters: Duty Cycle vs Conduction Losses

29.9.2025
27

Passive Components J-STD-075 Process Sensitivity Level Classification And Labeling

25.9.2025
46

Bourns Releases Semi-Shielded Power Inductor with Polarity Control

25.9.2025
13

Quality Challenges and Risk Mitigation for Passive Components in Harsh Environments

24.9.2025
44

EMI Noise Mitigation in Automotive 48V Power Supply Systems

24.9.2025
43

Bourns Introduced 15A Compact Common Mode Choke

24.9.2025
5

AI Hardware Development and Its Consequences for Passive Electronic Components

23.9.2025
59

Bourns Adds New Common Mode Automotive Chip Inductors

23.9.2025
9

Bourns Releases Automotive 150C SMD Power Inductors with High Saturation Current

22.9.2025
10

Upcoming Events

Oct 8
11:00 - 12:00 CEST

PCB Online Shop – simply “Made in Germany” by Würth Elektronik

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version