Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Smiths Interconnect Extends Space-Qualified, High-Reliability Fixed Chip Attenuators 

    Samtec Expands Offering of Slim, High-Density HD Array Connectors

    Bourns Unveils High-Precision Wirewound Resistor with Long-Term Stability

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    Littelfuse Acquires Basler Electric Enhancing High-Growth Industrial Market

    DigiKey Grows Inventory with Over 31K New Stocking Parts in Q3 2025

    Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

    Source: Semiconductor Intelligence

    October 25 Electronics Production: U.S. vs. Global Changes

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Smiths Interconnect Extends Space-Qualified, High-Reliability Fixed Chip Attenuators 

    Samtec Expands Offering of Slim, High-Density HD Array Connectors

    Bourns Unveils High-Precision Wirewound Resistor with Long-Term Stability

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    Littelfuse Acquires Basler Electric Enhancing High-Growth Industrial Market

    DigiKey Grows Inventory with Over 31K New Stocking Parts in Q3 2025

    Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

    Source: Semiconductor Intelligence

    October 25 Electronics Production: U.S. vs. Global Changes

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

TDK high-voltage contactors portfolio extended for high current up to 500 A

11.11.2019
Reading Time: 2 mins read
A A

source: TDK news

TDK Corporation has extended its HVC series of high-voltage contactors with the new HVC300 and HVC500 types with current capabilities of 300 A and 500 A, respectively. The new contactors can switch high voltages of up to 900 V DC, while types for 1200 V DC are available on request.

RelatedPosts

Smiths Interconnect Extends Space-Qualified, High-Reliability Fixed Chip Attenuators 

Samtec Expands Offering of Slim, High-Density HD Array Connectors

Bourns Unveils High-Precision Wirewound Resistor with Long-Term Stability

Their gas-filled switching chamber ensures that arcs are safely and quickly extinguished when the current is switched off. Thanks to the extremely fast switching capability of the HVC high-voltage contactors the duration of arcs is especially short, thus enabling reliable operations over the entire lifetime of the contactor. The new types have the same compact design as the HVC200 for 200 A with the same dimensions of 89 mm x 44 mm x 93.5 mm (l x w x h). Like the HVC200, the new high-voltage contactors are available with coils for operating voltages of 12 V or 24 V. In addition, the series includes types with an output for switching status detection.

The HVC series is especially suitable for use in battery management systems and DC charging stations in e-mobility applications. Further applications include DC traction systems, photovoltaic, energy storage systems, and uninterruptable power supplies (UPS). These applications require fast and reliable disconnecting from the DC source.

Main applications

  • Battery management systems and DC charging stations for e-mobility applications
  • Photovoltaic and energy storage systems
  • Uninterruptable power supplies

Main features and benefits

  • High current capability of up to 500 A
  • Hermetically sealed and high-speed arc extinguishing
  • Optional detection of switching status

Key data

Ordering code Type Current capability
[A]
Operating voltage
[V]
Coil voltage
[V]
B88269X1000C011 HVC200A-12 200 450 12
B88269X1010C011 HVC200A-24 200 450 24
B88269X1060C011 HVC200A-12S* 200 450 12
B88269X1060C011 HVC200A-24S* 200 450 24
B88269X1090C011 HVC300A-12 300 900 12
B88269X1100C011 HVC300A-24 300 900 24
B88269X1110C011 HVC300A-12S* 300 900 12
B88269X1120C011 HVC300A-24S* 300 900 24
B88269X1170C011 HVC500B-12 500 900 12
B88269X1180C011 HVC500B-24 500 900 24
B88269X1190C011 HVC500B-12S* 500 900 12
B88269X1200C011 HVC500B-24S* 500 900 24

* Including detection of switching status

Related

Recent Posts

Samtec Expands Offering of Slim, High-Density HD Array Connectors

30.10.2025
1

Bourns Unveils High-Precision Wirewound Resistor with Long-Term Stability

30.10.2025
1

Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

30.10.2025
2

Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

30.10.2025
3

Vishay Releases Space-Grade 150 W 28V Planar Transformers

29.10.2025
7

Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

27.10.2025
23

How to Select Ferrite Bead for Filtering in Buck Boost Converter

23.10.2025
40

VINATech Offers Smallest 100µF Al-Hybrid Capacitor

23.10.2025
38

Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

23.10.2025
10

Power Inductors Future: Minimal Losses and Compact Designs

30.10.2025
45

Upcoming Events

Nov 4
10:00 - 11:00 PST

Design and Stability Analysis of GaN Power Amplifiers using Advanced Simulation Tools

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

Nov 6
14:30 - 16:00 CET

Self-healing polymer materials for the next generation of high-temperature power capacitors

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version