Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Samtec Releases 800-Position High-Performance Array Connectors  

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Ripple Steering in Coupled Inductors: SEPIC Case

    TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

    Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Samtec Releases 800-Position High-Performance Array Connectors  

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Ripple Steering in Coupled Inductors: SEPIC Case

    TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

    Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

TDK Unveils EMC Noise Suppression Filters for Audio Lines

21.11.2023
Reading Time: 3 mins read
A A

TDK Corporation has announced its latest compact EMC noise suppression filters MAF1005FR series, measuring 1.0 mm (L) x 0.5 mm (W) x 0.5 mm (H). These multilayer chip components are designed to improve sound quality and reduce noise interference in the audio lines (sound lines) of smartphones and other devices such as tablets, wearables, and portable games. Mass production of the product series began this month, November 2023.

The audio lines in smartphones and similar devices emit electromagnetic noise, which can interfere with built-in antennas and degrade reception quality. This noise can be problematic, especially when high-quality audio and effective noise suppression are required. Chip beads are commonly used to control noise in audio lines. However, although they effectively reduce noise, they can also distort the audio quality, impacting the sound in these lines.

RelatedPosts

TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

TDK Extends SMT Gate Drive Transformers to 1000 V

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

The new MAF1005FR series of noise suppression filters can improve sound quality and reduce noise interference, with a typical impedance of up to 2600 Ω at 900 MHz and insertion loss of more than 25 dB. This is achieved by newly developed low-distortion ferrite materials. As a result, the sound quality is maintained, and the issue of sound deterioration caused by chip beads is addressed.

These components have a wide frequency bandpass, extending from the FM band to the cellular band. Unlike conventional products, which require two noise suppression filters for each frequency range, only one MAF1005FR component is required. This simplifies the design and implementation of noise suppression in electronic devices. The noise suppression filters are extremely compact, and an operating temperature range of -55 °C to +125 °C is supported.

TDK plans to expand its product lineup to include smaller components for high-frequency bandpass noise control, ranging from 900 MHz to 5 GHz. The company will also continue to provide products for applications requiring large current support, such as speakers, to meet market demands.

Features

  • Reduce electromagnetic noise across a wide range of frequencies, spanning from the FM band to the cellular band
  • Reduce audio distortions when inserted into devices, with newly developed low-distortion ferrite materials
  • Controlled sound distortions with only minimal reductions in volume, due to low resistance

Applications

  • Audio lines for smartphones, tablets, wearable devices and portable games (earphones, microphones, speakers)

Specification

TypeImpedance
[Ω] @100MHz
Impedance
[Ω] typ. @900MHz
DC resistance
[Ω] max.
Rated current
[mA] max.
MAF1005FRQ601AT000600 ±25%18001.00280
MAF1005FRQ801AT000800 ±25%22001.35270
MAF1005FRQ102AT0001000 ±25%26001.65240

Related

Source: TDK

Recent Posts

KYOCERA AVX Releases 600MHz Band71 Compact SAW Duplexer

30.7.2025
10

Murata Releases First High-Frequency XBAR Filter for Next-Gen Networks

8.7.2025
34

TDK Introduces High Current 80VDC Board-Mount EMI Filters

2.7.2025
42

Role of High-Q Ceramic Filters to Overcome GNSS Jamming

19.6.2025
28

Bourns Introduces 1206 Multilayer Common Mode Filters

16.6.2025
11

Bourns Releases New SMD Line Filter for Enhanced EMI Suppression

4.6.2025
24

TDK Expands 3-terminal Automotive SMD Chip Filters to 35V

4.6.2025
23

Kyocera Introducing SAW Filters for Implantable Medical and AED Applications

15.4.2025
30

Bourns Releases Automotive Grade Line Filters

1.4.2025
27

KYOCERA AVX Extends Small, High-Power, Thin-Film Band-Pass Filters

29.1.2025
38

Upcoming Events

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version