Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Introduces Low-ohmic 2W Thick Film Resistors in Compact Package

    Samsung Releases 1uF 25V 0402 MLCC for AI Power Modules 

    TDK and NIPPON CHEMICAL to Establish Joint Venture for MLCC Material Development

    Passive Components for Next Gen Automotive Systems

    ROHM Expands Its High-Accuracy EROM Models for Shunt Resistors

    Samsung Presents Worlds First 100V 22nF Automotive MLCC in 0402 Size

    Circular Connectors Coding

    binder Presents Harsh Environment Connector for Outdoor Environments

    DigiKey Introduces Industry-First Power Supply Configuration Tool

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Introduces Low-ohmic 2W Thick Film Resistors in Compact Package

    Samsung Releases 1uF 25V 0402 MLCC for AI Power Modules 

    TDK and NIPPON CHEMICAL to Establish Joint Venture for MLCC Material Development

    Passive Components for Next Gen Automotive Systems

    ROHM Expands Its High-Accuracy EROM Models for Shunt Resistors

    Samsung Presents Worlds First 100V 22nF Automotive MLCC in 0402 Size

    Circular Connectors Coding

    binder Presents Harsh Environment Connector for Outdoor Environments

    DigiKey Introduces Industry-First Power Supply Configuration Tool

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

WE Power Transfer and Data Transmission in One

30.10.2018
Reading Time: 2 mins read
A A

Source: Würth Elektronik eiSos news

Waldenburg (Germany), 30 October 2018 – Würth Elektronik eiSos and Infineon Technologies AG have jointly brought a development system for wireless power transfer onto the market.

RelatedPosts

Bourns Introduces Low-ohmic 2W Thick Film Resistors in Compact Package

Samsung Releases 1uF 25V 0402 MLCC for AI Power Modules 

Bourns Extends High Power Thick Film Resistors with Four New Series

Two aspects distinguish this development kit: On the one hand, it serves to develop applications outside the Qi standard up to a power of 200 W. Data can also be transmitted via transmitter and receiver coil, as well as receiver sending data to the transmit coil.

A manual is available online and explains the innovative method of modulating the alternating field between transmitter and receiver. Options include sensors and a display board to test scenarios for data acquisition, forwarding and display. The development kit is available online with the order code 760308EMP.

“As the manufacturer with the largest portfolio of wireless power coils, for some time now we have received repeated inquiries from customers looking for higher power applications beyond the Qi standard,” explains Cem Som, Division Manager Wireless Power Transfer at Würth Elektronik eiSos.

“With our development kit we address just these applications up to a power of 200 W. The circuit can be scaled from 10 W up to several kW. The currents in the resonance circuit are sinusoidal which ensures good EMC performance. The secret: By changing the switching frequency, the output voltage changes and data can be transmitted from the receiver to the transmitter.” Possible fields of application include Industry 4.0, IoT or medical technology, for instance.

Wherever there are harsh environments with any cable and connector openings in enclosures which should be avoided, such as in the case of wireless battery charging, it may be expedient to convey status messages.

Functional principle

The 760308EMP-WPT-200W development kit includes a power supply unit, a transmitter and a receiver unit.

The transmitter side consists of a full bridge and a resonance circuit. This is formed from the series connection of the WPT coil and the resonance capacitors. As a result of the phase shift between the voltage and current in the resonance circuit, the system works in ZVS (Zero Voltage Switching) mode. This leads to a very high efficiency of the overall system.

A synchronous rectifier is used on the receiver side with downstream filtering and screening. In addition, amplitude modulation (AM) of the alternating field between the transmitter and receiver allows any data to be sent from the receiver side to the transmitter side.

An application example that can be simulated with sensors at the I²C interface of the receiver board: While charging, a mobile device sends data to a base station. All data and documentation necessary to realize a proprietary system of this kind are freely available for downloading.

Related

Recent Posts

Bourns Introduces Low-ohmic 2W Thick Film Resistors in Compact Package

28.11.2025
6

Passive Components for Next Gen Automotive Systems

26.11.2025
55

ROHM Expands Its High-Accuracy EROM Models for Shunt Resistors

26.11.2025
18

DigiKey Introduces Industry-First Power Supply Configuration Tool

26.11.2025
12

Bourns Releases High Precision Power Resistor for High-Energy Pulse Applications

26.11.2025
9

YAGEO Expands Aluminum Capacitors with 80V Ratings for 48V Automotive and Industrial Systems

25.11.2025
25

Knowles Doubles Capacitance of its Class I Ceramic C0G Capacitors

24.11.2025
32

TDK Combines Varistor and Gas Discharge Tube into One Component

21.11.2025
31

Vishay Extends Automotive TO-220 Thick Film Power Resistors with 30W Option

19.11.2025
18

Upcoming Events

Dec 2
December 2 @ 12:00 - December 4 @ 14:15 CET

Microwave Packaging Technology

Dec 3
17:00 - 18:00 CET

The Hidden Secret of the Magnetic Transformer and example of its use

Dec 9
December 9 @ 12:00 - December 11 @ 14:15 EST

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version