Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Researchers Presents High-Performance Carbon-Based Supercapacitors

    Hirose Launches World’s Lowest Profile and Narrowest Pitch FPC Connector

    Modelithics Announces v25.5 of the COMPLETE+3D Library for Ansys HFSS

    PCNS 2025 Final Program Announced!

    DigiKey Expands Inventory with Over 32,000 Stocking NPIs in Q2 2025

    YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

    European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

    TDK Announced Wide Frequency Automotive Wirewound POC Inductors

    Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Researchers Presents High-Performance Carbon-Based Supercapacitors

    Hirose Launches World’s Lowest Profile and Narrowest Pitch FPC Connector

    Modelithics Announces v25.5 of the COMPLETE+3D Library for Ansys HFSS

    PCNS 2025 Final Program Announced!

    DigiKey Expands Inventory with Over 32,000 Stocking NPIs in Q2 2025

    YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

    European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

    TDK Announced Wide Frequency Automotive Wirewound POC Inductors

    Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

What is an Inductor ?

2.5.2025
Reading Time: 7 mins read
A A

This article explains very basic definition of What is magnetism, What is an Inductor ? as passive electronic component and its main application and technologies.

Inductors, also referred to as coils or sometimes choke, are important passive components along with resistors (R) and capacitors (C). Coils usually refer to wound conductive wires, and among them, those with a single wound wire have in recent years particularly been referred to as inductors. If
it is intended for low-frequency applications it usually has a core with a closed magnetic circuit that consists of laminated iron (power frequency) or a ferrite toroid (above 1kHz).

RelatedPosts

Inductor Resonances and its Impact to EMI

Rogowski Coil Current Sensor Explained

How to Design LLC Transformer

Inductance is usually represented by the symbol “L.” Although this L is said to come from Lenz of “Lenz’s Law” related to electromagnetic induction, there also appear to be various theories.

The basic structure of an inductor consists of a conductive wire wound in a coil shape and is able to convert electric energy to magnetic energy and store it inside the inductor. The storable amount of magnetic energy is determined by the inductance of the inductor and measured in Henry (H).

Inductors slow down current surges or spikes by temporarily storing energy in an electro-magnetic field and then releasing it back into the circuit. In hydrodynamic analogy (Fig.1.) inductor works as a large flywheel that offers resistance to every change in the flow/current. Anyone who has turned a bike upside down and turned the wheel up to speed knows, that there is a certain resistance to start. But, as soon as you have gained speed on the wheel it requires very little force to maintain its velocity. If you then want to brake, it requires a considerable force.

Figure 1. inductor as “flywheel” in hydrodynamic analogy

Inductor Applications

Inductors are primarily used in electrical power and electronic devices for these major purposes:

  1. Choking, blocking, attenuating, or filtering/smoothing high frequency noise in electrical circuits
  2. Storing and transferring energy in power converters (dc-dc or ac-dc)
  3. Creating tuned oscillators or LC (inductor / capacitor) “tank” circuits
  4. Impedance matching
  5. Inductors are also employed in electrical circuits to reduce EMI by attenuating high-frequency noise in order to meet EMC emission and immunity requirements.

What is a choke?

Primarily inductors consist of a coil. If we insert a core of magnetic material the inductive properties of the coil will increase. Such coils are then called chokes. When we draw current through a choke electric currents are induced in the magnetic material that try to create a counteracting magnetic field. These currents are undesired both for that reason and because they create heat losses.

Homogeneous magnetic bodies are excluded; the induced current would be too high. Instead mutually isolated ribbons are used or a powder technology where the binder material between the magnetic granules limits the induced current by their resistivity.

Connection

Inductors may be connected in series or in parallel; inductance then comply with the same laws as for resistors.

Connection in series

series inductance connection equation [1]

Connection in parallel
For loss free coils and coils with the same angle of phase applies

parallel inductance equation [2]

Inductive Reactance

Just as a capacitor the inductor presses a reactance on an AC circuit. To divide this reactance from that of a capacitor it is called the inductive reactance, XL. The quantity is expressed in ohms and complies with the formula:

inductive reactance equation [3]

ω = 2 x π x f, where f means the frequency expressed in Hz.

Basic Structure of Inductors and Inductance

The most basic inductors consist of a conductive wire wound in a coil shape, with both ends of the conductive wire as external terminals. In recent years, most inductors include a core, around which a conductive wire is wound.

Figure 2. basic structure of an inductor (left) and its practical examples (right)

The inductance of an inductor is determined by the following equation [4]:

inductance of an inductor equation [4]
  • L Inductance (H)
  • k Nagaoka coefficient
  • μ Core permeability (H/m)
  • N Number of coil turns
  • S Coil sectional area (m2)
  • l Coil length(m)
インダクタンス,电感,Inductance
Figure 3. illustration how to increase inductor inductance; source: Panasonic

Equivalent Circuit

An inductor can be described with the Figure 2.

Figure 2. Inductor with its winding on the core and with developed stray capacitance

The stray capacitances between the windings and between windings and core can be summarized to one single total capacitance CL. The winding wire also has resistance and in the magnetic material equivalent loss resistances appear. Taken together the characteristics of the inductor can be described with following equivalent circuit.

Figure 3. Equivalent circuit of the inductor.

At lower frequencies the capacitance plays a minor part, but as frequency rises we reach the self resonant frequency, fr, (sometimes abbreviated SRF) where the impedance curve arrives at a peak and then turns downwards and becomes capacitive.

inductor self-resonance frequency equation [4]

The measurement frequency (test frequency) is at a sufficient distance from fr and always is stated for respective inductor.

Electric vs Magnetic Field

Comparing magnetic fields with electrical fields, analogies emerge between certain parameters. These are summarized in Table 1.:

Tab. 1. Analogies between magnetic and electric fields

Related

Recent Posts

PCNS 2025 Final Program Announced!

31.7.2025
19

TDK Announced Wide Frequency Automotive Wirewound POC Inductors

30.7.2025
17

Bourns Announced Shielded Power Inductor with High Saturation and Low Radiation

30.7.2025
10

Würth Elektronik Expands MagI³C with Variable Step-Down Modules

30.7.2025
14

Switched Capacitor Converter Explained

28.7.2025
17

Researchers Demonstrated 200C Polymer Film Dielectric

28.7.2025
13

Researchers Demonstrated Zinc-Ion Based Photo-Supercapacitor

28.7.2025
11

TDK Presents Various Large-Size Ferrite Cores for Industrial Applications

25.7.2025
18
Comparative display of a grain size and domain structure; b free energy; c P-E loops after high-entropy ceramics (HECs) and PGS design. source: Nature Communications  ISSN 2041-1723

Researchers Propose Novel MLCC Dielectric Design to Increase Energy Storage Capacity

24.7.2025
43

Bourns Releases New 150C Shielded Carbonyl Powder Core Power Inductors

28.7.2025
22

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version