Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Releases Ultra-small PFC Capacitors

    KYOCERA AVX Releases Novel Mini BME Stacked Ceramic Capacitors

    Vishay Releases Class 1 Leaded High Voltage Ceramic Disc Capacitors

    TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

    DigiKey Presents Factory Tomorrow Season 5 Video Series

    Samsung MLCCs Lineup for In-Vehicle Infotainment

    source: Samtec

    Best Practices for Cable Management in High-Speed and High-Density Systems

    Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

    Bourns Releases TCO 240 Watt USB Mini-Breaker

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Releases Ultra-small PFC Capacitors

    KYOCERA AVX Releases Novel Mini BME Stacked Ceramic Capacitors

    Vishay Releases Class 1 Leaded High Voltage Ceramic Disc Capacitors

    TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

    DigiKey Presents Factory Tomorrow Season 5 Video Series

    Samsung MLCCs Lineup for In-Vehicle Infotainment

    source: Samtec

    Best Practices for Cable Management in High-Speed and High-Density Systems

    Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

    Bourns Releases TCO 240 Watt USB Mini-Breaker

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

A highly scalable polymer nanomaterial filled dielectric with superior capacitor performance over a broad temperature

27.1.2020
Reading Time: 2 mins read
A A
C/D efficiency and energy density.

(A) C/D curves at different electric fields of the base PEEU and nanocomposite with 0.21 volume % alumina measured at room temperature. (B) Discharged energy density and C/D efficiency as functions of applied electric fields for the base PEEU and nanocomposite with 0.21 volume % alumina at room temperature. (C) Electric field at 90% C/D efficiency and breakdown strength versus nanofiller loading at room temperature. (D) C/D curves at different electric fields of the base PEEU and nanocomposite with 0.21 volume % alumina at 150°C. (E) Discharged energy density and C/D efficiency as functions of applied electric fields for the base PEEU and nanocomposite with 0.21 volume % alumina at 150°C. (F) Electric field at 90% C/D efficiency and breakdown strength versus nanofiller loading at 150°C. Data points are shown, and solid and dashed lines are drawn to guide the eyes.

C/D efficiency and energy density. (A) C/D curves at different electric fields of the base PEEU and nanocomposite with 0.21 volume % alumina measured at room temperature. (B) Discharged energy density and C/D efficiency as functions of applied electric fields for the base PEEU and nanocomposite with 0.21 volume % alumina at room temperature. (C) Electric field at 90% C/D efficiency and breakdown strength versus nanofiller loading at room temperature. (D) C/D curves at different electric fields of the base PEEU and nanocomposite with 0.21 volume % alumina at 150°C. (E) Discharged energy density and C/D efficiency as functions of applied electric fields for the base PEEU and nanocomposite with 0.21 volume % alumina at 150°C. (F) Electric field at 90% C/D efficiency and breakdown strength versus nanofiller loading at 150°C. Data points are shown, and solid and dashed lines are drawn to guide the eyes.

Researchers from The Pennsylvania State University, USA published an article in Science Advances on highly scalable polymer dielectric metamaterial with superior capacitor performance over a broad temperature.

Although many polymers exhibit excellent dielectric performance including high energy density with high efficiency at room temperature, their electric and dielectric performance deteriorates at high temperatures (~150°C). Here, we show that nanofillers at very low volume content in a high-temperature (high–glass transition temperature) semicrystalline dipolar polymer, poly(arylene ether urea), can generate local structural changes, leading to a marked increase in both dielectric constant and breakdown field, and substantially reduce conduction losses at high electric fields and over a broad temperature range. Consequently, the polymer with a low nanofiller loading (0.2 volume %) generates a high discharged energy density of ca. 5 J/cm3 with high efficiency at 150°C. The experimental data reveal microstructure changes in the nanocomposites, which, at 0.2 volume % nanofiller loading, reduce constraints on dipole motions locally in the glassy state of the polymer, reduce the mean free path for the mobile charges, and enhance the deep trap level.

RelatedPosts

TDK Releases Ultra-small PFC Capacitors

KYOCERA AVX Releases Novel Mini BME Stacked Ceramic Capacitors

Vishay Releases Class 1 Leaded High Voltage Ceramic Disc Capacitors

The current paper reports development of a highly scalable and low-cost dielectric metamaterial approach, in which nanoparticles at very low volume loading (~0.2 volume %) substantially enhance the energy density, C/D efficiency, and breakdown field of high-temperature semicrystalline dipolar polymers. Specifically, the researches show that in poly(arylene ether urea) (PEEU), which is a high-Tg (>250°C) semicrystalline dipolar polymer, ca. 0.2 volume % of 20-nm-sized alumina nanofiller increases both the dielectric constant K and breakdown field E over a broad temperature range to >150°C. The dielectric constant K is raised from K = 4.7 of the base PEEU to 7.4. At 150°C, the nanocomposite films exhibit a breakdown field of 600 MV/m, increased from 400 MV/m of the base PEEU films. Moreover, the nanofiller at such a low loading also substantially reduces the high-field conduction loss. As a result, the PEEU films deliver a discharged Ue of 5 J/cm3 with a high C/D efficiency (>90%) at 150°C. The study chose PEEU because its urea unit has a high dipole moment of 4.56 D, which can serve as deep traps and reduce the conduction loss. In addition, the crystalline phase in PEEU is sensitive to processing conditions, which may be exploited for tuning the dielectric properties in dielectric metamaterials. Alumina (Al2O3) nanoparticles (K = 9.1; size, 20 nm; gamma phase), which have been widely used in nanocomposites, are chosen as the nanofiller.

The full detailed article is available at the link below

Related

Source: Science Advances

Recent Posts

TDK Releases Ultra-small PFC Capacitors

10.9.2025
7

KYOCERA AVX Releases Novel Mini BME Stacked Ceramic Capacitors

10.9.2025
12

Vishay Releases Class 1 Leaded High Voltage Ceramic Disc Capacitors

10.9.2025
4

TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

5.9.2025
16

Samsung MLCCs Lineup for In-Vehicle Infotainment

4.9.2025
27

Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

2.9.2025
36

Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

29.8.2025
39

Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

28.8.2025
15

Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

28.8.2025
34

Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

27.8.2025
44

Upcoming Events

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version