Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns BTJ Thermal Jumper Chips for PCB Heat Management

    One‑Pulse Characterization of Nonlinear Power Inductors

    Wk 51 Electronics Supply Chain Digest

    Samsung Unveils World First CLLC Resonant 1kV 33nF C0G MLCC in 1210 Size

    Bourns Releases 500VDC 690VAC Fuse to Protect Power Semiconductors

    Samsung MLCC Replacing Aluminum Polymer Capacitors in AI Systems

    Reliability Improvement in BaTiO3 MLCCs Using Ni–Sn and Ni–In Alloy Electrodes

    Littelfuse Introduces Automotive Current Sensors for EV Battery, Motor, and Safety Systems

    Vishay Releases Fast Acting Thin Film Chip Fuses

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns BTJ Thermal Jumper Chips for PCB Heat Management

    One‑Pulse Characterization of Nonlinear Power Inductors

    Wk 51 Electronics Supply Chain Digest

    Samsung Unveils World First CLLC Resonant 1kV 33nF C0G MLCC in 1210 Size

    Bourns Releases 500VDC 690VAC Fuse to Protect Power Semiconductors

    Samsung MLCC Replacing Aluminum Polymer Capacitors in AI Systems

    Reliability Improvement in BaTiO3 MLCCs Using Ni–Sn and Ni–In Alloy Electrodes

    Littelfuse Introduces Automotive Current Sensors for EV Battery, Motor, and Safety Systems

    Vishay Releases Fast Acting Thin Film Chip Fuses

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Capacitor Driven Electrical Bus

6.4.2022
Reading Time: 3 mins read
A A

As an environmentally friendly alternative to classic combustion engines, electric and hybrid drives in buses represent today‘s e-mobility solution. These systems rely on classic, electro-chemical batteries as storage device for the electric drive energy. Technical memo written by Alexander Schedlock, Jianghai Europe Electronic Components GmbH provides brief introduction into benefits of hybrid lithium-ion capacitors (LiC) supercapacitor-battery energy storage power system for capacitor driven electrical bus.

Depending on the battery technology used, other topics are added to the typical range question, such as the charging concept, the weight, the volume requirement and, in particular, safety. The last point is especially of great importance in the area of passenger transport. In contrast to a large number of manufacturers who rely solely on battery technologies, Jianghai is taking a new path: instead of ever larger batteries, Jianghai is proposing the use of complementary capacitor modules in buses. 

RelatedPosts

Jianghai Offers Custom Bottom Cooled Screw Aluminum Capacitors

The Benefits of Using Film Capacitor Modules For Modern Power Semiconductors

Jianghai Europe Introduces Next Generation of Li-ion Supercapacitors with Enhanced Energy Density

Different technologies are available depending on the application profile. They are summarized at Jianghai under the term „Energy-Cs“ and come from the family of double-layer capacitors („EDLCs“). For use in buses, the technology of Li-capacitors (abbreviated LiC) is of particular interest. They provide a link between batteries and capacitors, combining the best of both worlds.

Li capacitors offer the advantage of high power density and thus enable higher charging currents than battery modules. They allow this even with lower weight and volume. By avoiding chemical reactions, as is the case in battery systems, these capacitors are particularly cycle-resistant. Instead of only a few hundred to around a thousand possible charge and discharge cycles in an electrochemical battery, Li capacitors achieve many hundreds of thousands of cycles.

Highest Security Requirements

At the same time, they meet the highest safety requirements: Neither mechanical damage nor incorrect use lead to thermal runaway and thus to fire or explosion. In contrast, conventional battery modules require a great deal of effort in order to protect them in the best possible way against mechanical damage. The mechanical enclosure naturally reduces the energy density of the battery modules used.

Not to be neglected is the influence of the operating temperature on the function of a battery: High temperatures are disadvantageous for many battery technologies, yet also very low temperatures can have a harmful effect during operation. A lifetime reduction or even a complete failure are not uncommon here. LiCs do not have to struggle with this limitation, because they can be operated even at low temperatures without loss of service life or increased risk of failure.

Alternative Charging Concept

Despite all the advantages, LiCs are capacitors and thus a storage system with about five times lower energy density than that of a battery with the same weight (without taking into account the mechanical protection required for batteries). This is exactly where the Jianghai engineers start with the new bus concept: They did not try to install ever larger battery modules in order to achieve the longest possible range, but they rather changed the operating mode in order to be able to use capacitors instead of the batteries. Instead of a long term stop at a charging station for several hours, the buses charge their capacitor modules for a few minutes at each stop.

This mode of operation results in significant advantages over the usual e-bus operation: the buses can run without interruption for charging in continuous 24/7 operation, since the charging process is completed in the minute range. Furthermore, there are weight and volume savings, which in turn enable a larger number of passengers. In addition, the energy storage system is no longer a source of danger in the event of an accident. A comparison between a regular, battery-powered E-bus and a LiC bus shows the main differences (see Figure 1.).

Figure 1. Capacitor driven electrical bus comparison to battery powered vehicle

Continuous Further Development

Jianghai is continuously developing LiC technology, approaching the energy density of batteries without losing the technological advantages. Thus, the Li-capacitor technology should not only enable nationwide bus traffic in large cities, but also between more distant places.

Related

Source: Jianghai-Europe

Recent Posts

Samsung Unveils World First CLLC Resonant 1kV 33nF C0G MLCC in 1210 Size

19.12.2025
48

Samsung MLCC Replacing Aluminum Polymer Capacitors in AI Systems

19.12.2025
61

Reliability Improvement in BaTiO3 MLCCs Using Ni–Sn and Ni–In Alloy Electrodes

19.12.2025
38

Littelfuse Introduces Automotive Current Sensors for EV Battery, Motor, and Safety Systems

18.12.2025
6

Mechanical Testing of Tantalum Anodes to Predict Tantalum Capacitor Quality

17.12.2025
33

Jianghai Offers Custom Bottom Cooled Screw Aluminum Capacitors

17.12.2025
43

TDK Unveils Vibration-Resistant Hybrid Polymer Aluminum Capacitors

15.12.2025
33

Isabellenhütte Releases Automotive Pulse Load Resistors

11.12.2025
41

Vishay Releases Automotive Glass Protected 0402 NTC Thermistor

11.12.2025
17

Upcoming Events

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version