Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

    Bourns Releases New Current Transformer

    Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

    binder Offers Wide Range of M12 Panel Mount Connectors

    Bourns Releases New Shielded Power Inductors for DDR5

    Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

    Wk 21 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

    Bourns Releases New Current Transformer

    Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

    binder Offers Wide Range of M12 Panel Mount Connectors

    Bourns Releases New Shielded Power Inductors for DDR5

    Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

    Wk 21 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Capacitors for Medical Applications: Component Selection Considerations

19.12.2019
Reading Time: 5 mins read
A A
Technician checks the electronic device. Printed circuit board for the robot.

Technician checks the electronic device. Printed circuit board for the robot.

Murray Slovick published an overview on TTI MarketEye on capacitor selection considerations for medical application.

Capacitors for Medical Applications: Component Selection Considerations

Within the medical industry, electronics are finding their way into more applications, from large, imaging equipment down to smart tags for surgical packs. On these pages, MarketEYE contributor Dennis Zogbi has forecast that the global medical technology market will reach $515 billion by 2022 to support aging populations and emerging economies.

RelatedPosts

Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

Bourns Releases New Current Transformer

The medical devices industry is one of the most highly regulated sectors in the world; its regulating bodies include the International Standards Organization (ISO) and the U.S. Food and Drug Administration (FDA). These regulations, as well as the demands placed on electronic medical devices, have ramifications for the component selection process. In this article we will explore those impacts given that tantalum capacitors and multilayer ceramic capacitors (MLCCs) are the most popular types of capacitors for medical applications.

Regulatory Standards

Globally, the primary standard governing medical device design is formally known as IEC 60601-1, “Medical electrical equipment – Part 1: General requirements for basic safety and essential performance.” The European (EN 60601-1) and Canadian (CSA 60601-1) versions of the standard are identical to the IEC standard. IEC 60601-1 is a type test standard, not a standard for process certification. Consequently, it applies to a device design rather than a manufacturer’s processes.

The FDA regulates all medical devices marketed in the US, which are grouped into three broad classes depending on the device’s risk, invasiveness, and impact on the patient’s overall health. These classes are as follows:

  • Class I – Lowest Risk: Examples of Class I devices include manual toothbrushes and reusable surgical scalpels. Class I devices are subject to far fewer regulatory requirements than Class II or III devices.
  • Class II – Moderate Risk: Class II electronics include test and scan equipment. A non-invasive blood pressure monitor is an example of a Class II device.
  • Class III – Highest Risk: Devices that are inserted into the human body, including permanent implants, smart medical devices and systems such as pacemakers and defibrillators.

Capacitor Choices

Passive components have an important role in medical systems and are part of diagnostic, imaging, patient monitoring, and pharmaceutical delivery and dispensing applications. In particular, implantable medical electronic devices are usually powered by batteries or capacitors that have to be removed from the body after completing their function due to their non‐biodegradable properties.

Capacitors are employed for use in implantable medical devices such as defibrillators, insulin pumps and pacemakers, as well as in portable and wearable devices (including electrocardiograms, ultrasonic echo devices and blood gas analyzers). They are required to have high reliability, offer long service life and pass stringent screening checks.  Meeting customer demand today often also means miniaturization and advancements in capacitor materials and design.

Tantalum capacitors are used in most of the pacemakers and defibrillators manufactured each year. There are many reasons to choose tantalum, including their inherent reliability, self-healing capabilities (tantalum capacitors have low resistance paths through the dielectric which can self-heal, repairing the potential fault site), and their ability to pack high capacitance values into small case sizes.

MLCCs are attractive for medical devices because they are usually compact in size, offer high reliability and large capacity, and have predictable temperature coefficients. They also offer the most stable capacitance with respect to applied voltage.

Generally speaking, MLCCs are normally chosen for applications with capacitance ranges below 1 μF, and tantalum capacitors are selected for applications with capacitance values above 10 μF. In between (the 1–10 μF range), choices depend on relative size, requirements for capacitance stability over temperature and voltage, and rated voltage capability.

As MLCC technology can go to much smaller dimensions, MLCCs can be manufactured in case sizes that are not practical for tantalum capacitors while solid tantalum capacitors with MnO2 cathodes are attractive because they have no wear out mechanism. For tantalum capacitors, DC leakage current (DCL) is one of the most important electrical parameters. Compared to ceramic capacitors, tantalum capacitors have high leakage currents. The DCL of a tantalum capacitor also increases with an increase in temperature.

Capacitors fail due to various factors, including manufacturing processes and design defects such as cracks and voids that occur during production, materials that wear out, operating temperature, voltage, current, humidity and mechanical stress. These internal flaws can result in leakage instability, increased leakage current or even catastrophic dielectric breakdown. Some of the factors that can accelerate these defects include product assembly, thermomechanical stress and how the device is used. Frequently, failures can be attributed to the degradation of a given material. For example, thin layers of silicon dioxide are used as a dielectric for capacitors or as the gate oxide for a MOS semiconductor device. Time Dependent Dielectric Breakdown (TDDB) failures of capacitors occur due to the degradation of this insulation material.

Reliability assessment is an essential process in the production of components and electronic devices. Life Data Analysis predicts how products will operate throughout their lifetimes by analyzing data from a sample set of failures. In particular, the Weibull reliability assessment method – a mathematical technique frequently used to analyze various types of life data in order to predict failure rates based on studying sample behavior – is commonly used by capacitor manufacturers to assess reliability.

Usage Considerations

Among the sterilization methods available for high-volume medical devices is gamma radiation from Cobalt-60, a radioisotope which continuously emits gamma rays. During sterilization, gamma rays efficiently eliminate microorganisms from the medical device. From a circuit applications standpoint, however, the most important effect of radiation on a capacitor is the induced conductivity in the dielectric material. When exposed to ionizing radiation, capacitor leakage resistance decreases; as such, radiation can degrade the electrical performance of the part.

Dimensional change of the capacitor plate spacing is the principal cause of capacitance changes during irradiation. This change is due to pressure buildup from gas evolution and swelling which results in physical distortion of capacitor elements and thus changes the spacing. This dimensional change is most pronounced when radiation-sensitive materials, generally organics, like polystyrene, polyethylene terephthalate and polyethylene are used in one or more parts of the capacitor’s construction.

Changes in organic materials due to radiation are more pronounced, and so these are less satisfactory in a radiation environment than those capacitors employing inorganic dielectrics. Electrolytic capacitors (aluminum and tantalum) are capable of extended radiation exposure, with tantalum being more radiation-resistant.

One More Choice

While choosing the right capacitor for a medical application is not a trivial task, engineers will find online component selectors and circuit configurators readily available to help locate parts by product family, application or key parameters.

You also need to choose the right supplier. An experienced supplier can advise your design team early in the development process to avoid costly mistakes and find components that meet demanding specifications. The best way to ensure that components are standards compliant is by sourcing directly from suppliers or from authorized distributors.

Related

Source: TTI MarketEye

Recent Posts

Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

30.5.2025
2

Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

29.5.2025
15

VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

28.5.2025
33

Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

26.5.2025
22

Samsung Electro-Mechanics Releases High-Capacitance MLCCs for AI Server Applications

21.5.2025
53

Coupled Inductors Circuit Model and Examples of its Applications

21.5.2025
68

Würth Elektronik Introduces LTspice Models for ESD Products

21.5.2025
45

Littelfuse Gate Driver Integrates Diode and Current Limit Resistor in Compact IC

21.5.2025
20

Capacitor Ripple Current Testing: A Design Consideration

21.5.2025
62

Inductor Resonances and its Impact to EMI

16.5.2025
72

Upcoming Events

Jun 4
11:00 - 12:00 CEST

Würth Elektronik PCB Production in Asia

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version