Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

    Stackpole Offers High Voltage Plate Resistors up to 40KV

    How to Manage Supercapacitors Leakage Current and Self Discharge 

    Qualification of Commercial Supercapacitors for Space Applications

    Experimental Evaluation of Wear Failures in SMD Inductors

    Resonant Capacitors in High-Power Resonant Circuits

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

    Stackpole Offers High Voltage Plate Resistors up to 40KV

    How to Manage Supercapacitors Leakage Current and Self Discharge 

    Qualification of Commercial Supercapacitors for Space Applications

    Experimental Evaluation of Wear Failures in SMD Inductors

    Resonant Capacitors in High-Power Resonant Circuits

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Capacitors for Medical Applications: Component Selection Considerations

19.12.2019
Reading Time: 5 mins read
A A
Technician checks the electronic device. Printed circuit board for the robot.

Technician checks the electronic device. Printed circuit board for the robot.

Murray Slovick published an overview on TTI MarketEye on capacitor selection considerations for medical application.

Capacitors for Medical Applications: Component Selection Considerations

Within the medical industry, electronics are finding their way into more applications, from large, imaging equipment down to smart tags for surgical packs. On these pages, MarketEYE contributor Dennis Zogbi has forecast that the global medical technology market will reach $515 billion by 2022 to support aging populations and emerging economies.

RelatedPosts

Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

Electrolyte Selection and Performance in Supercapacitors

Connector PCB Design Challenges

The medical devices industry is one of the most highly regulated sectors in the world; its regulating bodies include the International Standards Organization (ISO) and the U.S. Food and Drug Administration (FDA). These regulations, as well as the demands placed on electronic medical devices, have ramifications for the component selection process. In this article we will explore those impacts given that tantalum capacitors and multilayer ceramic capacitors (MLCCs) are the most popular types of capacitors for medical applications.

Regulatory Standards

Globally, the primary standard governing medical device design is formally known as IEC 60601-1, “Medical electrical equipment – Part 1: General requirements for basic safety and essential performance.” The European (EN 60601-1) and Canadian (CSA 60601-1) versions of the standard are identical to the IEC standard. IEC 60601-1 is a type test standard, not a standard for process certification. Consequently, it applies to a device design rather than a manufacturer’s processes.

The FDA regulates all medical devices marketed in the US, which are grouped into three broad classes depending on the device’s risk, invasiveness, and impact on the patient’s overall health. These classes are as follows:

  • Class I – Lowest Risk: Examples of Class I devices include manual toothbrushes and reusable surgical scalpels. Class I devices are subject to far fewer regulatory requirements than Class II or III devices.
  • Class II – Moderate Risk: Class II electronics include test and scan equipment. A non-invasive blood pressure monitor is an example of a Class II device.
  • Class III – Highest Risk: Devices that are inserted into the human body, including permanent implants, smart medical devices and systems such as pacemakers and defibrillators.

Capacitor Choices

Passive components have an important role in medical systems and are part of diagnostic, imaging, patient monitoring, and pharmaceutical delivery and dispensing applications. In particular, implantable medical electronic devices are usually powered by batteries or capacitors that have to be removed from the body after completing their function due to their non‐biodegradable properties.

Capacitors are employed for use in implantable medical devices such as defibrillators, insulin pumps and pacemakers, as well as in portable and wearable devices (including electrocardiograms, ultrasonic echo devices and blood gas analyzers). They are required to have high reliability, offer long service life and pass stringent screening checks.  Meeting customer demand today often also means miniaturization and advancements in capacitor materials and design.

Tantalum capacitors are used in most of the pacemakers and defibrillators manufactured each year. There are many reasons to choose tantalum, including their inherent reliability, self-healing capabilities (tantalum capacitors have low resistance paths through the dielectric which can self-heal, repairing the potential fault site), and their ability to pack high capacitance values into small case sizes.

MLCCs are attractive for medical devices because they are usually compact in size, offer high reliability and large capacity, and have predictable temperature coefficients. They also offer the most stable capacitance with respect to applied voltage.

Generally speaking, MLCCs are normally chosen for applications with capacitance ranges below 1 μF, and tantalum capacitors are selected for applications with capacitance values above 10 μF. In between (the 1–10 μF range), choices depend on relative size, requirements for capacitance stability over temperature and voltage, and rated voltage capability.

As MLCC technology can go to much smaller dimensions, MLCCs can be manufactured in case sizes that are not practical for tantalum capacitors while solid tantalum capacitors with MnO2 cathodes are attractive because they have no wear out mechanism. For tantalum capacitors, DC leakage current (DCL) is one of the most important electrical parameters. Compared to ceramic capacitors, tantalum capacitors have high leakage currents. The DCL of a tantalum capacitor also increases with an increase in temperature.

Capacitors fail due to various factors, including manufacturing processes and design defects such as cracks and voids that occur during production, materials that wear out, operating temperature, voltage, current, humidity and mechanical stress. These internal flaws can result in leakage instability, increased leakage current or even catastrophic dielectric breakdown. Some of the factors that can accelerate these defects include product assembly, thermomechanical stress and how the device is used. Frequently, failures can be attributed to the degradation of a given material. For example, thin layers of silicon dioxide are used as a dielectric for capacitors or as the gate oxide for a MOS semiconductor device. Time Dependent Dielectric Breakdown (TDDB) failures of capacitors occur due to the degradation of this insulation material.

Reliability assessment is an essential process in the production of components and electronic devices. Life Data Analysis predicts how products will operate throughout their lifetimes by analyzing data from a sample set of failures. In particular, the Weibull reliability assessment method – a mathematical technique frequently used to analyze various types of life data in order to predict failure rates based on studying sample behavior – is commonly used by capacitor manufacturers to assess reliability.

Usage Considerations

Among the sterilization methods available for high-volume medical devices is gamma radiation from Cobalt-60, a radioisotope which continuously emits gamma rays. During sterilization, gamma rays efficiently eliminate microorganisms from the medical device. From a circuit applications standpoint, however, the most important effect of radiation on a capacitor is the induced conductivity in the dielectric material. When exposed to ionizing radiation, capacitor leakage resistance decreases; as such, radiation can degrade the electrical performance of the part.

Dimensional change of the capacitor plate spacing is the principal cause of capacitance changes during irradiation. This change is due to pressure buildup from gas evolution and swelling which results in physical distortion of capacitor elements and thus changes the spacing. This dimensional change is most pronounced when radiation-sensitive materials, generally organics, like polystyrene, polyethylene terephthalate and polyethylene are used in one or more parts of the capacitor’s construction.

Changes in organic materials due to radiation are more pronounced, and so these are less satisfactory in a radiation environment than those capacitors employing inorganic dielectrics. Electrolytic capacitors (aluminum and tantalum) are capable of extended radiation exposure, with tantalum being more radiation-resistant.

One More Choice

While choosing the right capacitor for a medical application is not a trivial task, engineers will find online component selectors and circuit configurators readily available to help locate parts by product family, application or key parameters.

You also need to choose the right supplier. An experienced supplier can advise your design team early in the development process to avoid costly mistakes and find components that meet demanding specifications. The best way to ensure that components are standards compliant is by sourcing directly from suppliers or from authorized distributors.

Related

Source: TTI MarketEye

Recent Posts

Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

3.10.2025
4

Electrolyte Selection and Performance in Supercapacitors

3.10.2025
1

Connector PCB Design Challenges

3.10.2025
11

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
14

Stackpole Offers High Voltage Plate Resistors up to 40KV

2.10.2025
12

How to Manage Supercapacitors Leakage Current and Self Discharge 

1.10.2025
19

Qualification of Commercial Supercapacitors for Space Applications

1.10.2025
25

Experimental Evaluation of Wear Failures in SMD Inductors

1.10.2025
24

Resonant Capacitors in High-Power Resonant Circuits

1.10.2025
20
a Schematic diagram of the BNT-based components constructed based on the entropy-increase strategy. b Digital photograph, cross-sectional SEM image, and EDS mappings of the MLCCs. c Unipolar P-E loops of MLCCs as a function of applied E. d Wrec and η of the MLCCs as a function of applied E. The comparison of (e) Wrec and η, (f) η and UF of the MLCCs with those of other recently reported state-of-the-art MLCCs. source: Nature Communications

Researchers Proposed Enhanced Energy Storage MLCC

1.10.2025
13

Upcoming Events

Oct 8
11:00 - 12:00 CEST

PCB Online Shop – simply “Made in Germany” by Würth Elektronik

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version