Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Transformer Design Optimization for Power Electronics Applications

    Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

    Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

    Lightweight Model for MLCC Appearance Defect Detection

    DMASS Reports First Positive Signs of European Distribution Market in Q3/25

    TAIYO YUDEN Releases 22uF MLCC in 0402 Size for AI Servers

    Wk 44 Electronics Supply Chain Digest

    Bourns Releases High Current Metal Alloy-based, Multilayer Power Chip Inductors

    Smiths Interconnect Extends Space-Qualified, High-Reliability Fixed Chip Attenuators 

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Transformer Design Optimization for Power Electronics Applications

    Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

    Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

    Lightweight Model for MLCC Appearance Defect Detection

    DMASS Reports First Positive Signs of European Distribution Market in Q3/25

    TAIYO YUDEN Releases 22uF MLCC in 0402 Size for AI Servers

    Wk 44 Electronics Supply Chain Digest

    Bourns Releases High Current Metal Alloy-based, Multilayer Power Chip Inductors

    Smiths Interconnect Extends Space-Qualified, High-Reliability Fixed Chip Attenuators 

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Cressall resistor liquid cooling boosts 3.3kV medium voltage loads

4.7.2018
Reading Time: 3 mins read
A A

Source: Process and Control Today News

In motor driven applications like cranes, lifts, hoists and conveyors, air cooled resistors are common, but in medium voltage, high power applications liquid cooling wins out. A medium voltage drive running off a 3.3kV supply to turn a 500kW motor will put a severe heating load on the application’s power transistors – hence the need for water cooling, as David Atkins, projects director at Cressall Resistors explains.

RelatedPosts

Transformer Design Optimization for Power Electronics Applications

Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

In marine applications, for instance, the drive is typically located in the bowels of a vessel, which makes heat dissipation a problem. Because of this, ships and oil rigs usually have chilled water systems with a single heat exchanger – a more efficient way of getting heat out from the vessel, compared to ducting warm air everywhere.

Water cooling

If 1MW or more of heat needs to be dissipated, direct water cooling makes more sense. A typical 1MW fresh water-cooled brake resistor for marine use is basically a 10 foot tube with large heating elements similar to those found in common household kettles. The braking electricity that is being regenerated powers these elements. Most ships have a chilled water system, which circulates cool water throughout the vessel, used for both air conditioning and equipment cooling.

Over the last ten years shaft-driven shipboard mechanical power transmission has been increasingly replaced by electrical power. For example, both the Royal Navy Type 45 destroyer and the Queen Elizabeth carrier are electrically driven. The prime mover is used solely for generating electricity, which is then distributed to various motors, including those driving the propeller shaft(s), and other consumer loads.

All-electric ship design

The logic behind all-electric ship design that is two-fold. Firstly, ship layout – a large motor does not need to be in the middle of the ship, which is better used as prime passenger and cargo space. Secondly – energy efficiency. Traditional ships could have up to four diesel engines located mid-ship running at low power under normal operating circumstances. This often made them inefficient. By using smaller diesel engines together with a couple of gas turbines, the right number of prime movers can be fired up to suit power demand, whether it is a fully-laden oil tanker afloat at sea or stationary at port.

In drilling or cable-laying vessels, where anything up to a mile of cable has to be paid out over the side during passage, the weight of the cable is so massive, that the drive motor has to reverse its function from motor to generator, in order to brake the cable reel. Air cooled resistors have heating elements enclosed within a fan cooled cabinet. This makes them suitable for deck mounting, often on anti-vibration mounts.

When most people think of a resistor, they see little components used in electronic equipment. However, a resistor is essentially a way of turning electric energy into heat energy. The latter can be easily wasted if it is not wanted at the location where it is produced.

This brings us back to the reason why a 500kW drive is typically supplied from a medium voltage 3.3kV supply instead of the usual low voltage 415V. Transmitting power at low voltage increases current – as formulated by Ohm’s law. The thickness of the copper therefore has to be increased to cope with the extra current. This is one of the reasons why power transmission over long distances is typically at high voltage 400kV – to reduce current and consequently, cable thickness.

Cressall’s EV2 advanced water cooled modular resistor range for low and medium voltage applications is especially designed to function in severe environments, like the ones marine systems have to function in. This patented design encapsulates and completely separates the resistor elements from the coolant.

An important benefit from using an electric drive is that reliable systems of regenerative and dynamic braking are available to complement or replace traditional mechanical braking systems. The advantages of electric braking include control, reliability, mechanical simplicity, weight saving and, in certain cases, the opportunity to make use of the regenerated braking energy.

featured image credit: Cressall

Related

Recent Posts

Samtec Expands Offering of Slim, High-Density HD Array Connectors

30.10.2025
9

Bourns Unveils High-Precision Wirewound Resistor with Long-Term Stability

30.10.2025
22

Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

30.10.2025
32

Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

27.10.2025
32

VINATech Offers Smallest 100µF Al-Hybrid Capacitor

23.10.2025
48

Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

23.10.2025
14

Bourns Unveils Automotive 3 Watt Gate Driver Transformer

22.10.2025
10

Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

20.10.2025
27

Bourns Release Automotive 4-Terminal Shunt Resistors

17.10.2025
32

Bourns Releases High Inductance Common Mode Choke

16.10.2025
25

Upcoming Events

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

Nov 6
14:30 - 16:00 CET

Self-healing polymer materials for the next generation of high-temperature power capacitors

Nov 11
17:00 - 18:00 CET

Industrial Applications Demand More from Interconnects in Next-Gen Designs

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version