Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

    Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

    Vishay Releases High Saturation 180C Automotive Inductors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Bourns Unveils High Reliability Compact Micro Encoders

    July 2025 ECST Components Survey Continue with Strong Sales Sentiment

    SCHURTER Releases Chip Fuse for ATEX and Precision Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

    Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

    Vishay Releases High Saturation 180C Automotive Inductors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Bourns Unveils High Reliability Compact Micro Encoders

    July 2025 ECST Components Survey Continue with Strong Sales Sentiment

    SCHURTER Releases Chip Fuse for ATEX and Precision Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Fluopolymers Offer Stable Performance for Electronics & Optical Terahertz Devices

24.11.2020
Reading Time: 4 mins read
A A

IDTechEx released new report “Fluoropolymer Opportunities in Electrics, Electronics 2021-2041” on interesting features of fluoropolymer chemicals and its use in electronics, components and optical devices.

A fluoropolymer is an organic polymer containing fluorine atoms. Fluoropolymers are typically available as liquids and solids, but new fluoroelastomers are getting interest. With fluoropolymers, the stability that comes from many fluorine-carbon bonds can be exhibited in many forms including formulations involving other atoms such as sulfur and chlorine that create or extend certain electrical and physical capabilities. 

RelatedPosts

Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

Fluoropolymers may be mechanically characterized as thermosets or the more-desired thermoplastics. Fluoropolymers can be homopolymers, copolymers, tripolymers and composites. They can be crystalline or amorphous. Chemical or physical surface treatment can greatly improve some properties of interest in electronics and electrics. Here then, we have an almost infinite choice of options to tailor these stable, versatile chemicals for specific uses in electronics and electrical engineering even to the optical transition of terahertz devices. Yes, they have long been used in optics too.

Fluoropolymers are specialty polymers which represent less than 4% of all macromolecules. In 2022, their production may be around 405 000 tonnes with PTFE still dominant but PVDF and FEP growing share. This is largely because 2020 has seen applications in electronics and electrical engineering becoming more important. For example, they are being designed into 5G communications equipment and vehicle autonomy radar as low loss dielectrics and thermal barriers. Indeed, 2020 saw the idea of 6G communications getting serious attention, Samsung saying mass deployment for 6G smartphones, etc. may be as early as 2030. That may be as high as THz frequencies and certainly a whole new field of THz electronics is opening up, needing not so much the electronics fluoropolymers as the optical ones like Cytop™ because Terahertz adjoins far infrared in frequency. It is an interesting merging of the world of loss factor/permittivity and that of refractive index/ transparency. 

Source: IDTechEx

Good guy and bad guy

The bad image of fluoropolymers is that they emit toxic gases if overheated from wrong use or wrong disposal. However, the good image is more dominant nowadays such as non-slip, even bacteria slide off them, no emission of volatile organic compounds VOCs, resistant to almost all chemicals, and the gymnasts of electricity. They, therefore, appear in more of the growing applications such as medical, electric vehicles, lithium batteries and newer better batteries coming later and also fuel cells.

Their versatility is boosted by new deposition coming in such as RF sputtering (into cracks and around corners) and 3D printing (complex shapes. New formulations found uses in 2020 such as glass and ceramic fiber fluoropolymer composites and biodegradable forms. Recycling became serious. Triboelectric fluoropolymers promised COVID-19 killing, self-powered face masks to 1MW ocean wave blankets making electricity but all remained stuck in the laboratory. Triboelectric sensors, energy harvesting and electrostatic filters are still tough to make with consistent performance and competitive cost. They make bad electricity (spiky, high impedance, high voltage) calling for expensive electronics to make the desired when used for energy harvesting and sensors. 

Source: IDTechEx

Gaps in the market Latest Nafion™ PTFE won a prestigious prize in 2020 for excellence as a fuel cell membrane. The biggest threat to fluoropolymers remained lower cost alternatives. Examples are as a new BASF lithium-ion battery electrode binder and new battery and fuel cell membranes without fluoropolymers. Another example is an electrostatic face mask for particulates was newly on sale in China that used alternatives that worked better than fluoropolymers and were cheaper.

Dielectric elastomer generators DEG received research funding in 2020. These squashy, elastic capacitors make electricity when moved. DEG motion sensors and kW DEG power blankets on water waves in the laboratory have been demonstrated. MW one day? However, the new fluoropolymer elastomers are too expensive. The cost of fluoropolymers is often in the processing not the monomer cost. Reducing the cost of technical fluoropolymers is a big opportunity.  

All image source: IDTechEx

featured image source: Polyflon

Related

Source: IDTechEx

Recent Posts

Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

6.8.2025
4

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

6.8.2025
3

How to Calculate the Output Capacitor for a Switching Power Supply

6.8.2025
5

Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

4.8.2025
16

Researchers Presents High-Performance Carbon-Based Supercapacitors

1.8.2025
22

Modelithics Announces v25.5 of the COMPLETE+3D Library for Ansys HFSS

1.8.2025
4

PCNS 2025 Final Program Announced!

4.8.2025
59

European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

30.7.2025
54

Switched Capacitor Converter Explained

28.7.2025
38

Samsung Releases 1000V 1812 X7R 100nF MLCC for Electric Vehicles

28.7.2025
26

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version