Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    ESR of Capacitors, Measurements and Applications

    Murata Christophe Pottier Appointed President of EPCIA

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    YAGEO Unveils Compact 2.4 GHz SMD Antenna

    KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

    Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    ESR of Capacitors, Measurements and Applications

    Murata Christophe Pottier Appointed President of EPCIA

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    YAGEO Unveils Compact 2.4 GHz SMD Antenna

    KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

    Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

High Voltage Ceramic Capacitors for Electric Vehicles

25.1.2022
Reading Time: 7 mins read
A A
High voltage ceramic capacitors for electric vehicles applications are discussed in a technical paper written by Jeff Lee, KYOCERA AVX Components Corporation.

Introduction

Electric vehicles (EVs) have accelerated the demand for high-performance, high-reliability capacitor technologies. The wide array of voltage, power, and size requirements of the various electrical subsystems in modern EVs necessitates careful capacitor selection by designers. As shown in the blue segments of figure 1, these subsystems include AC-DC conversion, DC-DC conversion, power management, and battery monitoring, to name a few.

Figure 1: EV building blocks
Figure 2: Multi-layer ceramic capacitor (MLCC) construction

The four most common capacitor technologies that meet the strict quality and reliability demands of automotive AECQ-200 standards are aluminum electrolytic, tantalum, polymer film, and ceramic. Aluminum electrolytics have wide voltage and capacitance ratings at attractive price points but suffer from reliability issues due to electrolyte volatilization and leakage. Tantalum devices have excellent electrical stability over a wide temperature range but suffer from lower voltage ratings and potential short circuit failure modes.

RelatedPosts

KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

KYOCERA AVX Expands Stacked MLCC Capacitors Offering

KYOCERA Releases Shielded Board-to-Board Connectors for Reliable EMI Protection

Polymer film capacitors are widely used in industrial circuits due to their excellent inrush current handling capability and high reliability but may be unsuitable in many automotive applications due to their large form-factor and high relative price. A multi-layer ceramic capacitor (MLCC) is shown in figure 2.

Figure 3: MLCC floating pattern for higher voltage capabilities

MLCCs consist of multiple layers of electrodes separated by ceramic dielectrics. The dielectric
thickness determines the voltage rating, and the size and number of electrode layers determine
the capacitance. The ends of the ceramic stack up are plated to form the electrodes for connection to the outside world. In high voltage applications, the voltage rating can be increased through the use of a slightly different structure employing floating electrodes. As shown in figure 3, these floating electrodes create two series capacitive layers, effectively splitting the voltage potential.

When considering MLCCs for high voltage applications, designers should also know that ceramic dielectrics are not all created equal. Capacitors are typically assigned a three-letter code based on their operating temperature range and environmental sensitivity for a given dielectric. Two standard codes are C0G and X7R. Figure 4 highlights the differences between these two capacitor codes.

Figure 4: Physical differences between C0G and X7R ceramic capacitors

Figures 5. and 6. demonstrate how these capacitor codes behave with different DC voltages and temperatures. As one can see, C0G (also called NP0) is extremely stable across voltage and temperature. This stability does, however, come with a tradeoff of cost and physical size.

Figure 5: C0G (NP0) and X7R ceramic capacitors sensitivity to an applied voltage
Figure 6: C0G (NP0), X7R, and Y5V ceramic capacitors sensitivity to environmental temperature

The ceramic capacitor stands out for its wide voltage range and low series resistance (ESR). These characteristics make it particularly well suited to many automotive applications. However, understanding the structure and composition of MLCC capacitors is critical to selecting the proper variant and designing a successful product.

X and Y Capacitors

Figure 7: Class X Capacitor for Cross-Line Connection

In many high voltage AC circuits, capacitors are required on the power input lines for electromagnetic interference filtering. MLCC capacitors can be well suited for this task and are generally divided into two rating classes: X and Y.

As shown in figure 7, X capacitors are used for line-to-line cross-connections. They are designed to fail in the short circuit mode to activate upstream overcurrent protection devices like fuses or breakers.

Figure 8: X class capacitor endurance category.
Figure 9: Y Capacitor for Line-to-Ground Connection

X capacitors are subcategorized by their voltage pulse endurance, and must be adequately chosen for a given application to guarantee safety. Figure 8 presents the ranges for X1, X2, and X3 capacitors.

On the other hand, Y capacitors are used in line-to-ground connections, as shown in figure 9. These capacitors are designed to fail in the open configuration, with a safety goal of preventing high voltages from reaching user-accessible parts.

Y capacitors are subcategorized by their pulse endurance and their overall voltage tolerance. Figure 10 presents the ranges for Y1 to Y4 capacitors. In automotive applications, these capacitors are used to protect battery cells, high voltage buses, data lines, and other electric drive system
components from harmful EMI noise.

Figure 10: Y class capacitor categories

High Voltage Subsystem Examples

The following examples present use cases for MLCC capacitors in high voltage electric vehicle subsystems. A practical application example comes from the compressor motor of an EV air conditioning system.

This motor is powered by an AC inverter and requires a 22nF, 1.5kV capacitor with a Y rating for filtering EMI to ground. The schematic and PCBA are shown in figure 11, where high voltage MLCCs were successfully implemented in production for this purpose.

Figure 11: Multiple MLCCs used as a Y capacitor for inverter EMI filtering

Another example examines the on-board charger present in EVs for recharging internal batteries. The top-level block diagram is shown in figure 12.
In this example, the charger accepts AC shore power, and using a PFC AC-DC converter, generates the appropriate charging voltage for the batteries.

The AC input lines and the DC output filter require X and Y high voltage capacitors for filtering. MLCCs were successfully employed in many of these designs to achieve a voltage tolerance greater than 630V while satisfying AECQ-200 requirements and meeting physical size targets.

Figure 12: EV On-Board Battery Charger

Conclusion

Electric vehicle systems have created new demands for high voltage, high-reliability capacitors, particularly in X and Y filtering circuits. MLCCs are available in a wide range of structures and compositions and can be well suited to satisfy these demands.

MLCCs can be used to provide high voltage ratings, low ESR, and favorable cost and size tradeoffs from AC-DC converters to high power snubbers.

Related

Source: AVX

Recent Posts

RF Inductors: Selection and Design Challenges for High-Frequency Circuits

10.11.2025
26

Transformer Safety IEC 61558 Standard

7.11.2025
10

ESR of Capacitors, Measurements and Applications

7.11.2025
45

3-Phase EMI Filter Design, Simulation, Calculation and Test

6.11.2025
49
Image credit: Samtec

How to Match the Right Connector with Protocol Requirements

6.11.2025
14

Smoltek CNF-MIM Capacitors Pass 1,000h Reliability Test

6.11.2025
12

Capacitor Lead Times: October 2025

6.11.2025
67

Paumanok Unveils Aluminum Capacitor Foils World Markets Study 2025-2030

6.11.2025
15

Coilcraft Introduces Ultra-Low Loss Shielded Power Inductors

6.11.2025
18

Upcoming Events

Nov 11
17:00 - 18:00 CET

Industrial Applications Demand More from Interconnects in Next-Gen Designs

Nov 12
11:00 - 12:00 CET

PCB Design: Impedance is for everyone!

Nov 12
November 12 @ 12:00 - November 13 @ 14:15 EST

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version