Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Wk 42 Electronics Supply Chain Digest

    Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

    September 2025 ECIA US Components Sales Sentiment Continues in Optimism

    Bourns Release Automotive 4-Terminal Shunt Resistors

    Bourns Releases High Inductance Common Mode Choke

    Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

    High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

    Bourns Releases High Clearance and Creepage 1500VDC Power Transformer

    KYOCERA AVX Expands Stacked MLCC Capacitors Offering

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Wk 42 Electronics Supply Chain Digest

    Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

    September 2025 ECIA US Components Sales Sentiment Continues in Optimism

    Bourns Release Automotive 4-Terminal Shunt Resistors

    Bourns Releases High Inductance Common Mode Choke

    Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

    High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

    Bourns Releases High Clearance and Creepage 1500VDC Power Transformer

    KYOCERA AVX Expands Stacked MLCC Capacitors Offering

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Polymer Tantalum Capacitors Beyond AEC-Q200 LEO Satellites

30.9.2025
Reading Time: 4 mins read
A A

The paper “Automotive Polymer Tantalum Capacitors with Capabilities Beyond AEC-Q200 –Guidelines for Usage in the LEO Satellite Industry” was presented by Cristina MotaCaetano, KEMET Electronics Portugal, SA, Évora, Portugal at the 5th PCNS Passive Components Networking Symposium 9-12th September 2025, Seville, Spain as paper No. 5.2.

Introduction

This article presents an in-depth exploration of automotive polymer tantalum capacitors and their potential applications in the Low Earth Orbit (LEO) satellite industry.

RelatedPosts

YAGEO Unveils Compact 3.6kW LLC Transformer for OBC EV Charging

YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

Advances in the Environmental Performance of Polymer Capacitors

As the demand for small satellite constellations grows to support global broadband coverage, the need for highly reliable, lightweight, and thermally efficient capacitors has intensified. This document discusses how automotive-grade polymer tantalum capacitors can exceed traditional AEC-Q200 requirements and provide robust performance under the unique challenges of space environments.

Key Points

  • LEO satellite constellations will continue to expand rapidly, driven by the demand for high-speed, low-cost broadband services.
  • Tantalum polymer capacitors offer advantages such as low ESR, compact size, self-healing properties, and superior frequency response.
  • Automotive polymer tantalum capacitors (T59x/T598 series) demonstrate capabilities beyond AEC-Q200, including extended endurance life, radiation tolerance, low outgassing, and compliance with space derating guidelines.
  • Adoption in space applications is supported through up-screened options, Sn-Pb terminations to mitigate tin whiskers, and robust testing (screening, LAT, DPA, radiation, and environmental tests).
  • Best practices include 50% voltage derating in extremely dry and cold space conditions to minimize anomalous charging current (ACC).

Extended Summary

The global small satellite market is projected to reach $11.2 billion by 2029, with a CAGR of 16.6%, fueled by demands from commercial, governmental, and rural broadband sectors. Designing small satellites imposes strict constraints on size and weight, which drives the selection of high volumetric efficiency components such as surface-mount polymer tantalum capacitors. Compared to legacy MnO2-based devices, polymer tantalum capacitors exhibit lower ESR, better power efficiency, smaller thermal footprint, and enhanced high-frequency performance.

Automotive-grade polymer tantalum capacitors, like the Kemet YAGEO T59x and T598 series, are designed for demanding environments up to 150°C. They are available in a wide range of case sizes, voltage ratings up to 75V, capacitances up to 680 µF, and ESR as low as 6 mΩ. To meet space application needs, these capacitors undergo up-screening processes aligned with MIL-PRF-55365 or MIL-PRF-32700, including extended surge testing at varied temperatures. The addition of Sn-Pb termination (H option) addresses the risk of tin whiskers in vacuum environments.

Destructive Physical Analysis (DPA) and visual examinations confirm mechanical and constructional integrity, with no defects or unacceptable delamination in the capacitor layers. Extended endurance life testing demonstrates the T598 series maintaining stable ESR, capacitance, and leakage current over 10,000 hours at 125°C and 0.67 rated voltage, doubling typical AEC-Q200 requirements. Accelerated storage and aging studies project reliable long-term operation for automotive and LEO satellite mission profiles.

Radiation testing using Cobalt-60 gamma irradiation up to 212 krad (Si) confirms that polymer tantalum capacitors are inherently radiation hard, with stable capacitance during irradiation and subsequent annealing. Outgassing tests per ASTM E595 show exceptionally low Total Mass Loss (TML) and Collected Volatile Condensable Materials (CVCM), validating their suitability for vacuum and high-altitude environments.

A notable phenomenon in space applications is anomalous charging current (ACC) under step voltage application in dry, cold conditions. While it poses no risk to the capacitors themselves, it can affect system behavior. A 50% derating strategy is recommended to mitigate this effect and ensure optimal reliability.

Conclusion

Automotive polymer tantalum capacitors, particularly the T59x and T598 series, offer exceptional performance beyond standard automotive qualifications and are well-suited for use in small LEO satellite constellations. Their low ESR, radiation tolerance, robust long-term endurance, and compliance with space-specific testing and derating practices make them a competitive choice for next-generation space applications. By combining automotive-grade manufacturing maturity with specialized up-screening, these capacitors open new opportunities in the rapidly expanding small satellite market.

5_2_KEMET_PCNS 2025 _PAPER_T598 Space GuidelinesDownload

Related

Source: PCNS

Recent Posts

Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

20.10.2025
3

September 2025 ECIA US Components Sales Sentiment Continues in Optimism

20.10.2025
3

Bourns Release Automotive 4-Terminal Shunt Resistors

17.10.2025
15

Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

16.10.2025
9

High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

15.10.2025
21

KYOCERA AVX Expands Stacked MLCC Capacitors Offering

14.10.2025
36

YAGEO Unveils Compact 3.6kW LLC Transformer for OBC EV Charging

13.10.2025
132

KYOCERA Releases Shielded Board-to-Board Connectors for Reliable EMI Protection

13.10.2025
24

Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

10.10.2025
62

Enhancing Energy Density in Nanocomposite Dielectric Capacitors

9.10.2025
36

Upcoming Events

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version