Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    KYOCERA AVX Expands Stacked MLCC Capacitors Offering

    Murata and QuantumScape Joint Development for Solid Batteries Ceramic Separators

    YAGEO Unveils Compact 3.6kW LLC Transformer for OBC EV Charging

    Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

    KYOCERA Releases Shielded Board-to-Board Connectors for Reliable EMI Protection

    Wk 41 Electronics Supply Chain Digest

    Samtec Expands Connector Severe Environment Testing Offering

    Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

    YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    KYOCERA AVX Expands Stacked MLCC Capacitors Offering

    Murata and QuantumScape Joint Development for Solid Batteries Ceramic Separators

    YAGEO Unveils Compact 3.6kW LLC Transformer for OBC EV Charging

    Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

    KYOCERA Releases Shielded Board-to-Board Connectors for Reliable EMI Protection

    Wk 41 Electronics Supply Chain Digest

    Samtec Expands Connector Severe Environment Testing Offering

    Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

    YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Quality Challenges and Risk Mitigation for Passive Components in Harsh Environments

24.9.2025
Reading Time: 5 mins read
A A

The paper “Quality Challenges and Risk Mitigation for Passive Components in Harsh Environments” was presented by Antonio Rodríguez Arenas, ALTER Technology, Seville, Spain at the 5th PCNS Passive Components Networking Symposium 9-12th September 2025, Seville, Spain as Keynote II. paper.

This paper was selected by the TPC Technical Program Committee as one of the six top papers for award nomination. 

RelatedPosts

Advances in the Environmental Performance of Polymer Capacitors

How to Manage Supercapacitors Leakage Current and Self Discharge 

Qualification of Commercial Supercapacitors for Space Applications

Introduction

This paper addresses the challenges and solutions involved in the procurement and qualification of passive electronic components—resistors, capacitors, inductors, and connectors—for harsh environments such as aerospace, military, and industrial applications.

In these contexts, extreme temperatures, mechanical stress, and environmental factors can lead to catastrophic failures if components are not thoroughly vetted. With increasing reliance on Commercial-Off-The-Shelf (COTS) parts, ensuring reliability under mission-critical and time-constrained conditions requires rigorous inspection protocols, clear communication, and adherence to both industry standards and evolving best practices.

Key Points

  • Harsh environment applications demand strict qualification of passive components to prevent mission failures.
  • Common challenges include plating defects, solder joint cracks, and process incompatibilities—especially with COTS components.
  • Analytical methods like DPA, SEM, outgassing, solderability, and SAM are crucial for detecting latent defects.
  • Case studies highlight how process deviations, improper handling, or test setup errors can create critical failures.
  • Improved communication between suppliers, quality teams, and integrators is essential for effective risk mitigation.
  • Lessons learned emphasize the importance of proactive planning, inspection, and flexible risk management.

Extended Summary

The study begins by situating the importance of passive components in high-reliability environments, where failure can lead to costly or life-threatening outcomes. While industry and space agencies have introduced standards like ECSS-Q-ST-70-02C, ESCC 21001, and MIL-STD-202 for inspection and environmental testing, gaps remain in addressing COTS-specific issues such as pure tin plating, enamel-coated wires, and complex assembly interactions.

The paper presents six detailed case studies:

  1. Peeling in D-Sub Crimp Contacts – Cracks and gold/nickel plating detachment were traced to excessive phosphorous content in nickel underlayers. This resulted in ECSS non-compliance and contamination risk, emphasizing the need for tight plating control and transparent manufacturer communication.
  2. Loss of Electrical Contact in SMD Inductor – Conductive epoxy assembly over gold pads failed due to trapped enamel on coil wires, highlighting that epoxy attachment is not inherently compatible with all wire-wound components.
  3. Mechanical Shock Test Fixture Failure – A single connector failure was linked to test fixture design rather than component quality, illustrating the critical role of mechanical setup validation in environmental testing.
  4. Outgassing and Solderability Test Interaction – Flux residues from solderability tests caused false outgassing failures. Sequencing of tests, sample control, and enhanced cleaning protocols were implemented to prevent contamination-driven rejection.
  5. Cracking in Chip Ceramic Capacitors – Internal cracks were a result of improper preconditioning before solderability testing, not factory defects. Applying manufacturer-specific preconditioning and using SAM for non-destructive analysis prevented repeat failures.
  6. Thin Wire Inductor and Relay Solder Joint Issues – Ultra-fine wire inductors and hermetic relays showed latent failures due to mechanical stress and solder joint cracking. Enhanced precap inspection, multidirectional visual checks, and careful handling of ultra-thin wires were critical to long-term reliability.

Across these studies, recurring themes emerge: Many failures result from the interaction between components and processes rather than inherent material defects. Inspection methods such as SEM, DPA, and SAM are indispensable in identifying hidden hazards. Communication gaps and late-stage discovery of incompatibilities remain a major risk driver, often compounded by rigid interpretation of legacy standards that lack COTS-specific guidance.

The paper emphasizes that robust qualification benefits from early supplier engagement, clear definition of process constraints, and continuous feedback loops. Corrective actions—ranging from rework validation to fixture redesign—must be grounded in thorough root cause analysis and supported by documentation to maintain confidence in flight hardware.

Conclusion

Ensuring the reliability of passive components in harsh environments requires a combination of technical rigor, process adaptability, and cross-disciplinary communication.

The case studies demonstrate that many issues can be mitigated by proactive planning, careful test sequencing, enhanced inspection methods, and adherence to both standards and manufacturer recommendations. By institutionalizing lessons learned and fostering stronger supplier partnerships, the high-reliability electronics community can reduce risk, improve qualification efficiency, and better adapt to the growing use of COTS components in mission-critical applications.

KNII ALTER Quality Challenges and Risk Mitigation for Passive Components in Harsh EnvironmentsDownload

Related

Source: PCNS

Recent Posts

KYOCERA AVX Expands Stacked MLCC Capacitors Offering

14.10.2025
3

YAGEO Unveils Compact 3.6kW LLC Transformer for OBC EV Charging

13.10.2025
99

Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

13.10.2025
13

KYOCERA Releases Shielded Board-to-Board Connectors for Reliable EMI Protection

13.10.2025
18

Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

10.10.2025
31

YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

9.10.2025
19

Enhancing Energy Density in Nanocomposite Dielectric Capacitors

9.10.2025
28

Advances in the Environmental Performance of Polymer Capacitors

8.10.2025
61

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

8.10.2025
24

Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

8.10.2025
14

Upcoming Events

Oct 15
20:00 - 20:30 CEST

Planar Design & Simulation

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version