Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Murata Releases First High-Frequency XBAR Filter for Next-Gen Networks

    Vishay NTC Immersion Thermistor Delivers Fast Response in Liquid Cooled Automotive Systems

    Wk 27 Electronics Supply Chain Digest

    VINATech Supercapacitors Enhance Automotive Safety with Reliable E-Latch Emergency Power

    Exxelia Unveils Advanced Components for the Medical Device Industry

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Murata Releases First High-Frequency XBAR Filter for Next-Gen Networks

    Vishay NTC Immersion Thermistor Delivers Fast Response in Liquid Cooled Automotive Systems

    Wk 27 Electronics Supply Chain Digest

    VINATech Supercapacitors Enhance Automotive Safety with Reliable E-Latch Emergency Power

    Exxelia Unveils Advanced Components for the Medical Device Industry

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

RF Inductors Key Characteristics and Applications

17.4.2025
Reading Time: 4 mins read
A A

This article based on Knowles Precision Devices blog explains RF Inductors via their key characteristics and applications.

Inductors are a fundamental component in electronic circuits, but not all inductors perform equally across different frequency ranges.

RelatedPosts

Learn How Supercapacitors Enhance Power System in Knowles eBook

Role of High-Q Ceramic Filters to Overcome GNSS Jamming

Knowles Extends Range and Performance of C0G MLCC Capacitors

At high frequencies, standard power inductors suffer from increased losses, reduced efficiency, and undesirable parasitic effects.

RF inductors, specifically designed for radio frequency and microwave applications, address these challenges by minimizing resistive losses, optimizing self-resonant frequency, and maintaining signal integrity.

Here, we examine the distinguishing characteristics of RF inductors, highlighting how they differ from other inductor types and why they are essential in high-frequency applications.

How Are RF Inductors Different from Other Inductors?

An RF inductor is a specialized passive electronic component designed to operate efficiently at radio frequencies and microwave frequencies. Unlike power inductors, which manage energy transfer and filtering in power supply applications, RF inductors are optimized for minimal energy loss and high signal integrity at high frequencies.

The primary difference between RF inductors and other inductors lies in:

  • Frequency Range: RF inductors function in the megahertz to gigahertz range while power inductors typically operate at lower frequencies.
  • Core Material: RF inductors often feature ceramic or air cores to minimize energy losses and ensure stability at high frequencies. Power inductors use ferrite cores to achieve higher inductance values.
  • Current Handling: Power inductors are designed to handle significant current loads whereas RF inductors prioritize maintaining signal integrity with minimal distortion.

Key Electrical Properties for Selecting RF Inductors

Selecting the right RF inductor requires an understanding of its key electrical properties, which includes:

  • Inductance Value: Determines the inductor’s ability to oppose changes in current
  • Self-Resonant Frequency (SRF): The point where the inductor’s parasitic capacitance cancels out its inductance defining the maximum effective operating frequency
  • Q-Factor: A measure of efficiency; higher values indicate lower energy losses and improved performance in filtering and tuning applications
  • DC Resistance (DCR): Lower DCR reduces power loss, which is critical in high frequency circuits
ApplicationInductanceMaximum DC Current (IDC)Self-Resonant Frequency (SRF)Quality Factor 
(Q)
DC Resistance (RDC)
High-frequency resonance circuits (RF)LowLowVery HighVery HighLow
EM coupling (Power)High–HighLowVery Low
Filter circuits (Power)HighHighHighLowVery Low
Switch-mode power supplies, DC/DC converters (Power)–HighMediumLowVery Low

RF inductors are essential in high-frequency applications, enabling critical functions in communication, medical, and defense systems. They are used in RF filters and oscillators to control frequency bands, amplifier biasing circuits for impedance matching, and MRI preamplifiers (Figure 1) to ensure low-noise signal processing. Additionally, they support radar and communication systems across VHF, UHF, and S-band frequencies and maintain signal integrity in RF test equipment.

Figure 1: In MRI preamplifiers, RF inductors are critical in low-noise signal amplification and maintaining signal integrity, which is essential for high-sensitivity imaging.

Related

Source: Knowles Precision Devices

Recent Posts

Würth Elektronik Present Efficient Motor Controller Evaluation Kit

8.7.2025
1

Exxelia Unveils Advanced Components for the Medical Device Industry

7.7.2025
31

TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

1.7.2025
21

Sumida Announces New DC Common Mode Choke Coil Series

1.7.2025
14

KYOCERA AVX Releases New 3dB Hybrid Couplers

1.7.2025
14

YAGEO Expands One Turn Inductors for AI and High-Efficiency Power Applications

27.6.2025
39

Würth Elektronik Extends High Saturation Flat-Wire Power Inductors Line

26.6.2025
23

Advancements and Applications of Switch Capacitor Power Converters

25.6.2025
37

Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

24.6.2025
30

Samsung Delivers Silicon Capacitors to Marwell AI Systems

24.6.2025
73

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version