Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Exxelia Publishes Micropen White Papers for Printed Electronics

    Stackpole Releases AlN High‑Power Thick Film Chip Resistors

    Samsung Q4 2025 Results: MLCC focus for AI, Server and Automotive

    Würth Elektronik Developed a Custom Transformer for Active Hand Orthosis

    Wk 4 Electronics Supply Chain Digest

    Capacitor Technology Dossier

    Panasonic High Precision Chip Resistors Bridge Gap Between Thin and Thick Technology

    ROHM Extends 2012 Shunt Resistors Power Rating up to 1.25 W

    January 2026 Interconnect, Passives and Electromechanical Components Market Insights

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Exxelia Publishes Micropen White Papers for Printed Electronics

    Stackpole Releases AlN High‑Power Thick Film Chip Resistors

    Samsung Q4 2025 Results: MLCC focus for AI, Server and Automotive

    Würth Elektronik Developed a Custom Transformer for Active Hand Orthosis

    Wk 4 Electronics Supply Chain Digest

    Capacitor Technology Dossier

    Panasonic High Precision Chip Resistors Bridge Gap Between Thin and Thick Technology

    ROHM Extends 2012 Shunt Resistors Power Rating up to 1.25 W

    January 2026 Interconnect, Passives and Electromechanical Components Market Insights

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

RF Inductors Key Characteristics and Applications

17.4.2025
Reading Time: 4 mins read
A A

This article based on Knowles Precision Devices blog explains RF Inductors via their key characteristics and applications.

Inductors are a fundamental component in electronic circuits, but not all inductors perform equally across different frequency ranges.

RelatedPosts

Knowles Doubles Capacitance of its Class I Ceramic C0G Capacitors

Knowles Releases High Q Non-Magnetic X7R MLCCs for Medical Imaging

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

At high frequencies, standard power inductors suffer from increased losses, reduced efficiency, and undesirable parasitic effects.

RF inductors, specifically designed for radio frequency and microwave applications, address these challenges by minimizing resistive losses, optimizing self-resonant frequency, and maintaining signal integrity.

Here, we examine the distinguishing characteristics of RF inductors, highlighting how they differ from other inductor types and why they are essential in high-frequency applications.

How Are RF Inductors Different from Other Inductors?

An RF inductor is a specialized passive electronic component designed to operate efficiently at radio frequencies and microwave frequencies. Unlike power inductors, which manage energy transfer and filtering in power supply applications, RF inductors are optimized for minimal energy loss and high signal integrity at high frequencies.

The primary difference between RF inductors and other inductors lies in:

  • Frequency Range: RF inductors function in the megahertz to gigahertz range while power inductors typically operate at lower frequencies.
  • Core Material: RF inductors often feature ceramic or air cores to minimize energy losses and ensure stability at high frequencies. Power inductors use ferrite cores to achieve higher inductance values.
  • Current Handling: Power inductors are designed to handle significant current loads whereas RF inductors prioritize maintaining signal integrity with minimal distortion.

Key Electrical Properties for Selecting RF Inductors

Selecting the right RF inductor requires an understanding of its key electrical properties, which includes:

  • Inductance Value: Determines the inductor’s ability to oppose changes in current
  • Self-Resonant Frequency (SRF): The point where the inductor’s parasitic capacitance cancels out its inductance defining the maximum effective operating frequency
  • Q-Factor: A measure of efficiency; higher values indicate lower energy losses and improved performance in filtering and tuning applications
  • DC Resistance (DCR): Lower DCR reduces power loss, which is critical in high frequency circuits
ApplicationInductanceMaximum DC Current (IDC)Self-Resonant Frequency (SRF)Quality Factor 
(Q)
DC Resistance (RDC)
High-frequency resonance circuits (RF)LowLowVery HighVery HighLow
EM coupling (Power)High–HighLowVery Low
Filter circuits (Power)HighHighHighLowVery Low
Switch-mode power supplies, DC/DC converters (Power)–HighMediumLowVery Low

RF inductors are essential in high-frequency applications, enabling critical functions in communication, medical, and defense systems. They are used in RF filters and oscillators to control frequency bands, amplifier biasing circuits for impedance matching, and MRI preamplifiers (Figure 1) to ensure low-noise signal processing. Additionally, they support radar and communication systems across VHF, UHF, and S-band frequencies and maintain signal integrity in RF test equipment.

Figure 1: In MRI preamplifiers, RF inductors are critical in low-noise signal amplification and maintaining signal integrity, which is essential for high-sensitivity imaging.

Related

Source: Knowles Precision Devices

Recent Posts

Würth Elektronik Developed a Custom Transformer for Active Hand Orthosis

26.1.2026
5

Passive Components in Quantum Computing

22.1.2026
81

Exxelia Offers Custom Naval Transformers and Inductors

21.1.2026
15

Würth Elektronik Introduces Product Navigator for Passive Components

14.1.2026
80

Panasonic Passive Components for Reliable Robotic Arms

14.1.2026
102

DC/DC Push‑Pull Converter vs PSFB Design Guide

12.1.2026
107

How Metal Prices Are Driving Passive Component Price Hikes

8.1.2026
400

Modelithics COMPLETE Library v25.8 for Keysight ADS

7.1.2026
44

Taiyo Yuden Releases 165C Automotive Multilayer Metal Power Inductor in 1608 Size

7.1.2026
43

Upcoming Events

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version