Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Releases Ultra-small PFC Capacitors

    KYOCERA AVX Releases Novel Mini BME Stacked Ceramic Capacitors

    Vishay Releases Class 1 Leaded High Voltage Ceramic Disc Capacitors

    TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

    DigiKey Presents Factory Tomorrow Season 5 Video Series

    Samsung MLCCs Lineup for In-Vehicle Infotainment

    source: Samtec

    Best Practices for Cable Management in High-Speed and High-Density Systems

    Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

    Bourns Releases TCO 240 Watt USB Mini-Breaker

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Releases Ultra-small PFC Capacitors

    KYOCERA AVX Releases Novel Mini BME Stacked Ceramic Capacitors

    Vishay Releases Class 1 Leaded High Voltage Ceramic Disc Capacitors

    TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

    DigiKey Presents Factory Tomorrow Season 5 Video Series

    Samsung MLCCs Lineup for In-Vehicle Infotainment

    source: Samtec

    Best Practices for Cable Management in High-Speed and High-Density Systems

    Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

    Bourns Releases TCO 240 Watt USB Mini-Breaker

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Supercapacitor Benefits in Backup Power and Load Management Applications

10.10.2024
Reading Time: 4 mins read
A A

This article based on Knowles Precision Devices blog discusses role of supercapacitors in backup power and load management applications.

Supercapacitors, also known as electric double-layer capacitors (EDLCs), store energy electrostatically rather than via chemical reactions like traditional batteries. Their unique characteristics make them ideal for applications requiring short bursts of power and/or durability over time.  

RelatedPosts

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

Knowles Releases Inductors for Mission-Critical RF Applications

Learn How Supercapacitors Enhance Power System in Knowles eBook

With built-in high-power characteristics, supercapacitors are critical in power electronics, where engineers are looking for short-term power peaks. 

Supercapacitors are also popular in low-power applications, like security installations. In these cases, batteries provide insufficient performance over time; in contrast, supercapacitors can efficiently handle those quick bursts of energy when needed and endure many more charge/discharge cycles than batteries over time. 

Supercapacitors in Electronic Circuits

Supercapacitors play two main functions in electronic circuits. In battery-powered devices, they provide backup power in the event of disconnection (Figure 1a). They also provide alternating current (AC) voltage for devices with heavy switching currents (Figure 1b). In that case, supercapacitors protect the device’s memory, for example, from large voltage drops. 

Figure 1. Common supercapacitor roles in electronic circuits, including backup power (a) and protection against voltage drops (b). 

The following examples demonstrate how supercapacitors assume these functions in real-time clock backups, power failure backups, high load assist systems and hybrid energy storage systems to enhance efficiency and reliability. 

Real-Time Clock Backup

In real-time clock backup, also known as memory backup, solid-state drives have many advantages over hard-disk drives, including low power consumption and high reliability. By design, write speed is their main weakness, and that’s remedied using protected cache memory (SDRAM). SDRAMs need backup power, and supercapacitors are an excellent choice because of their fast response time, high power density and low maintenance requirements – see Figure 2.

Power Failure Backup

Power supply backups, otherwise known as uninterruptible power supplies (UPS), offer emergency power when a system’s primary power source fails. In these cases, telecommunications, industrial and other electrical equipment can be subject to malfunction or data loss. To successfully provide uninterrupted power, the backup supply must be able to start up reliably and instantaneously – see Figure 3.

Figure 2. Supercapacitor real-time clock backup application
Figure 3. Supercapacitor power failure backup application

High Load Assist

Supplementary systems help maintain a system’s primary energy storage system (ESS). In some cases, like the camera flash on a smartphone, peak lower load is significantly higher for a short period of time. Supercapacitors are ideal secondary sources to handle those power bursts while leveraging a low-power, more cost-effective battery as the primary energy source – see Figure 4.

Hybrid Energy Storage Systems

Some energy storage systems combine supercapacitors with batteries to form hybrid energy storage systems (HESS). These are common in applications like the photovoltaic (PV) microgrids found in homes and neighborhoods. Microgrids are weak electrical grids, so they’re sensitive to load generation changes. A HESS decreases the impact of variations in load – See Figure 5.

Figure 4. Supercapacitor high load assist application
Figure 5. Hybrid supercapacitor- battery high energy storage system application in photovoltaic microgrids

As technology continues to evolve, supercapacitors will remain a critical component in meeting the demand for more efficient, reliable and sustainable energy solutions.

Related

Source: Knowles Precision Devices

Recent Posts

TDK Releases Ultra-small PFC Capacitors

10.9.2025
18

KYOCERA AVX Releases Novel Mini BME Stacked Ceramic Capacitors

10.9.2025
19

Vishay Releases Class 1 Leaded High Voltage Ceramic Disc Capacitors

10.9.2025
10

TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

5.9.2025
26

Samsung MLCCs Lineup for In-Vehicle Infotainment

4.9.2025
27

Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

3.9.2025
30

Bourns Releases TCO 240 Watt USB Mini-Breaker

3.9.2025
9

Littelfuse Adds 600W Automotive TVS Diodes for High-Energy Transient Protection

2.9.2025
13

Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

2.9.2025
36

Bourns Releases Automotive High Creepage and Clearance Transformer

1.9.2025
31

Upcoming Events

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version