Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

    European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

    TDK Announced Wide Frequency Automotive Wirewound POC Inductors

    Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

    Bourns Announced Shielded Power Inductor with High Saturation and Low Radiation

    Würth Elektronik Expands MagI³C with Variable Step-Down Modules

    KYOCERA AVX Releases 600MHz Band71 Compact SAW Duplexer

    binder Supports Miniaturization of Power Supplies with M12 Compact Connectors

    Switched Capacitor Converter Explained

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

    European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

    TDK Announced Wide Frequency Automotive Wirewound POC Inductors

    Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

    Bourns Announced Shielded Power Inductor with High Saturation and Low Radiation

    Würth Elektronik Expands MagI³C with Variable Step-Down Modules

    KYOCERA AVX Releases 600MHz Band71 Compact SAW Duplexer

    binder Supports Miniaturization of Power Supplies with M12 Compact Connectors

    Switched Capacitor Converter Explained

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Wide Terminal Reverse Geometry Chip Resistors Boost Power Rating and Mechanical Robustness

30.6.2021
Reading Time: 5 mins read
A A

A higher level of power in smaller parts – this is undoubtedly the overriding direction where the electronic component market is currently heading. This article explains construction and advantage of wide terminal (reverse geometry) resistor chips.

Chip resistors, being one of the smallest and most accessible components in any electronic design. When looking, for instance, at a standard resistor in 1206 case size with a power range of 0.25W, there is a constant demand from the market to achieve this range in a case size not larger than 0603.

RelatedPosts

Panasonic Releases Enhanced Reliability Sealed Sliding Switches

Panasonic Releases New Aluminum Hybrid Capacitors with High Ripple Current in Compact Size

Panasonic Expands Production of Hybrid Capacitors for AI

For established suppliers of high quality resistors, this means to continuously strive for innovation in order to meet the customers’ demands for a contemporarily advanced resistor portfolio. One of the key approach for meeting those resistor downsizing requirements would be the wide terminal resistors.

Figure 1: wide terminal chip resistors design; source: Panasonic

Wide Termination Resistors Construction

The name is based on two innovative constructive principles:

  1. The terminals on this type of resistor are found on the long side of the resistor whereas they are on the short one at conventional products (see Figure 1). So, when having conventionally a 2010 case size, the wide terminal type would be correspondingly 1020 case size. This increases the amount of current being able to pass through the resistor which results in a significantly higher power range.
  2. Instead of using one block of resistive element, two or three blocks can be used.

Benefits of wide termination designs

  • better thermal conduction into PCB = higher power rating by 30-50% (Figure 2.)
  • lower ESL = lower parasitic and higher frequency range (Figure 3.)
  • higher mechanical strength = higher vibration and flex stress robustness (Figure 3.)
  • less thermal stress as differences in the coefficient of expansion between substrate and chip decreases in significance with shorter distances between terminations
Figure 2. Wide termination designs increase power ratings by 30-50% due to better thermal conduction into PCB; source: KOA
Figure 3. Wide terminal vibration / flex robustness and lower ESL; source: AVX

Is there any trade off using reverse geometry wide terminal devices? The only downside of the design, considering the high manufacturing price is now almost identical, that PCB cleaning process may be more difficult in narrow and long gaps between the termination pads.

Using of multiple resistive element blocks

Using of multiple (typically two or three depending to case size) instead of one block of resistive elements may further increase wide termination resistor chips’ thermal dissipation ability and thus increase the power rating even further. Each of these smaller elements is trimmed by laser. This supports the heat dissipation throughout the alumina substrate elements and avoids hotspots in one area. See figure 4.

Figure 4. Heat generation comparison of two resistive elements vs single element; source: Panasonic

As a result, the power range can be increased.

Applications

The field of suitable applications for wide terminal resistors is wide: From automotive and industrial applications to building automation and many other applications where a higher power range is as essential as a compact case design.

Wide terminal resistors with lower resistance values are particularly popular for replacing metal shunt resistors. If the replacement is technically feasible, resorting to these resistors helps saving space on the PCB. Wide terminal resistors are much cheaper compared to metal shunt resistors, rendering them the perfect solution for current sensing with higher power requirements.

In the automotive sector, wide terminal resistors can be used in electrical control units (ECU), anti-lock braking systems, headlights, EPS, motors and many other applications whereas in industrial contexts, wide terminal resistors are the perfect solution for power supplies, DC/DC converters or motor controls.

See Figure 5. with example of available types and range.

Figure 5. Example of wide termination chip resistor types, and range; source: Panasonic

Summary

Wide terminal, reverse geometry chip resistors present a set of benefits over conventional designs. Electronic designers shall look into these type of components especially when searching for resistor downsizing without any compromises in terms of power handling.

In addition, wide terminal designs provide higher mechanical vibration and flex robustness that is often required in automotive, industrial or aerospace applications. Lower ESL values helps also to improve its operating frequency range.

Use of multiple resistive elements inside of the wide resistor chip body may increase power rating even higher.

Related

Source: Panasonic Industry, EPCI

Recent Posts

TDK Announced Wide Frequency Automotive Wirewound POC Inductors

30.7.2025
2

Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

30.7.2025
2

Switched Capacitor Converter Explained

28.7.2025
11

Samsung Releases 1000V 1812 X7R 100nF MLCC for Electric Vehicles

28.7.2025
16

Samsung Electro-Mechanics Releases Molded MLCC Capacitors

28.7.2025
21

Researchers Demonstrated 200C Polymer Film Dielectric

28.7.2025
10

Researchers Demonstrated Zinc-Ion Based Photo-Supercapacitor

28.7.2025
9

TDK Presents Various Large-Size Ferrite Cores for Industrial Applications

25.7.2025
14
Comparative display of a grain size and domain structure; b free energy; c P-E loops after high-entropy ceramics (HECs) and PGS design. source: Nature Communications  ISSN 2041-1723

Researchers Propose Novel MLCC Dielectric Design to Increase Energy Storage Capacity

24.7.2025
38

Stackpole Unveils 1W High Power Density Current Sense Chip Resistor

24.7.2025
11

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version