Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Releases Ultra-small PFC Capacitors

    KYOCERA AVX Releases Novel Mini BME Stacked Ceramic Capacitors

    Vishay Releases Class 1 Leaded High Voltage Ceramic Disc Capacitors

    TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

    DigiKey Presents Factory Tomorrow Season 5 Video Series

    Samsung MLCCs Lineup for In-Vehicle Infotainment

    source: Samtec

    Best Practices for Cable Management in High-Speed and High-Density Systems

    Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

    Bourns Releases TCO 240 Watt USB Mini-Breaker

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Releases Ultra-small PFC Capacitors

    KYOCERA AVX Releases Novel Mini BME Stacked Ceramic Capacitors

    Vishay Releases Class 1 Leaded High Voltage Ceramic Disc Capacitors

    TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

    DigiKey Presents Factory Tomorrow Season 5 Video Series

    Samsung MLCCs Lineup for In-Vehicle Infotainment

    source: Samtec

    Best Practices for Cable Management in High-Speed and High-Density Systems

    Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

    Bourns Releases TCO 240 Watt USB Mini-Breaker

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Capacitors in smartphone antenna systems

11.2.2022
Reading Time: 5 mins read
A A

Article explains basic configurations of smartphone antennas and application/requirements of capacitors used in these systems.

Antennas are fundamental components in today’s communication devices. They are used for transmitting and/or receiving signals in form of electromagnetic waves, and come in a variety of designs, shapes and sizes depending on the applications for which they are intended.

RelatedPosts

TDK Releases Ultra-small PFC Capacitors

KYOCERA AVX Releases Novel Mini BME Stacked Ceramic Capacitors

Vishay Releases Class 1 Leaded High Voltage Ceramic Disc Capacitors

Capacitors have a broad range of applications in modern antenna systems. In this article, we will explore the applications of capacitors in smartphone antenna systems and key considerations when selecting these components.

Smartphone antenna systems

A typical smartphone employs multiple antenna systems: cellular communication antenna system, BlueTooth antenna system, GPS antenna system and WiFi antenna system.

In addition to the different systems, some antenna systems contain more than one antenna. For instance, a typical 4G LTE antenna system contains two or four antennas.

Having antennas close to each other in a limited space, as is common in mobile devices, poses challenges to circuit designers.

Mobile devices such as smartphones and tablets require antennas that are small in size and capable of delivering excellent performance. In addition, these antenna systems demand capacitors with specific performance characteristics.

In a typical smartphone, we can have two or more antenna systems working simultaneously. The distance between these antenna systems is usually small making it extremely difficult to achieve flawless performance.

Mutual interference can greatly affect the performance of a device and it is critical for circuit designers to minimize it. As more features are being added to mobile devices and the need for more antennas grows, traditional techniques of preventing mutual interference are becoming less and less effective.

Designers use various techniques to eliminate or minimize interference between antenna systems. Some of the strategies that are commonly used include distributing the antennas, minimizing the size of antennas, using band pass filters and employing more directional antennas.

The mutual interference between antennas is greatly determined by how they are placed within a device. To minimize it, most manufacturers distribute antennas in a way that ensures minimum interference. The downside of this approach is that the user may unknowingly block some of the antennas when holding a device leading to poor performance.

Another approach is using multiple directional antennas. The antenna that receives the strongest signal is selected. Although this approach is commonly used in portable devices, its use in smartphones is limited due to the compactness of today’s devices.

The interference between a pair of antennas that are oriented in the same direction is more than the interference between a pair that is not oriented in the same direction. Placing antennas in a way that produces different polarization profiles helps to minimize interference between different antenna systems in a smartphone. This strategy is less effective for devices with multiple antenna systems such as today’s smartphones.

There is not a single strategy that completely eliminates mutual interference in antenna systems. However, by combining two or more strategies, it has been demonstrated that the interference can be reduced to acceptable levels. This is the approach that most smartphone manufacturers are using to ensure that multiple antenna systems work in compact devices with minimum impact on performance.

Applications of capacitors in smartphone antenna systems

Capacitors are key components in antenna systems. The most common applications of capacitors in antenna systems include impedance matching, frequency tuning and filtering.

Antenna tuning is one of the strategies used by smartphone manufacturers to improve the overall efficiency of smartphone antenna systems. Tuning an antenna helps to improve its range and radiated power. Aperture tuning boosts the total antenna efficiency while impedance tuning maximizes the power transferred by an antenna.

Capacitors and inductors are commonly used for tuning applications. Adding these components to antenna systems also helps to adjust the resonant frequency. Capacitors for use in today’s smartphone antenna systems are required to have excellent performance characteristics.

Apart from tuning, capacitors are also used in smartphone antenna systems for filtering and impedance matching. In general, these capacitors are required to have low leakage current, high quality factor, high power capability and high linearity. For instance, tunable capacitors for use in antenna systems are designed to offer excellent RF performance, high linearity, and low power consumption.

The power transferred by an antenna is greatly affected by impedance mismatch. Matching the impedance helps to boost the efficiency with which an antenna transfers power. Dynamic matching of the impedance further improves the efficiency since the component is capable of determining the addition or subtraction required to achieve a matched system.

Advancements in capacitor manufacturing technology

Various advancements in capacitor technology have been made in an attempt to produce capacitors that meet the strict performance requirements of smartphone antenna systems. To start with, capacitor manufacturers are using microelectromechanical systems (MEMS) technology to produce ultra-small capacitors for smartphone antenna systems. 

Unlike ordinary capacitors, these components offer improved impedance matching. In addition, this technology enables smartphone manufacturers to get components with close tolerance capacitance values.

MEMS technology also allows production of tunable capacitors that are ultra-small in size. Since space limitation is a major challenge in today’s smartphones, the small size of these components makes them an unmatched option. In addition, capacitors that are based on this technology provide dynamic impedance matching thus lowering the overall power consumption.

Thin-film technology is commonly employed in the manufacturing of capacitors for use in smartphone antenna systems. This technology enables production of components with performance characteristics that can be tightly controlled. Using thin-film capacitors improves the overall efficiency of smartphone antenna systems.

Conclusion

Today’s smartphones have multiple antenna systems crammed within a compact space. Smartphone manufacturers are employing different strategies to minimize mutual interference between different antenna systems. Capacitors are fundamental components in today’s smartphone antenna systems. They are mainly used for filtering, frequency tuning, and impedance matching. Capacitors for use in these applications are required to have excellent performance characteristics including low leakage current, high quality factor and high linearity.

Related

Recent Posts

TDK Releases Ultra-small PFC Capacitors

10.9.2025
12

KYOCERA AVX Releases Novel Mini BME Stacked Ceramic Capacitors

10.9.2025
17

Vishay Releases Class 1 Leaded High Voltage Ceramic Disc Capacitors

10.9.2025
8

TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

5.9.2025
23

Samsung MLCCs Lineup for In-Vehicle Infotainment

4.9.2025
27
source: Samtec

Best Practices for Cable Management in High-Speed and High-Density Systems

4.9.2025
15

Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

2.9.2025
36

Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

29.8.2025
40

Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

28.8.2025
15

Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

28.8.2025
34

Upcoming Events

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version