Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Vishay Releases Sulfur‑Resistant Chip Resistors

    Würth Elektronik Introduces Lead-Free SMT Spacers

    Schurter Releases EKO HV Fuses up to 1000 VDC, 1100 A

    Empower Releases High-Density Embedded Silicon Capacitors

    TDK Unveils 125C Compact DC Link Film Capacitors

    SCHURTER Releases Coin Cell Supercapacitors for Backup Power

    Skeleton Technologies Expands in U.S. to Power AI Data Centers

    TDK Releases Stackable µPOL 25A Power Modules

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Vishay Releases Sulfur‑Resistant Chip Resistors

    Würth Elektronik Introduces Lead-Free SMT Spacers

    Schurter Releases EKO HV Fuses up to 1000 VDC, 1100 A

    Empower Releases High-Density Embedded Silicon Capacitors

    TDK Unveils 125C Compact DC Link Film Capacitors

    SCHURTER Releases Coin Cell Supercapacitors for Backup Power

    Skeleton Technologies Expands in U.S. to Power AI Data Centers

    TDK Releases Stackable µPOL 25A Power Modules

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Capacitors to Generate High Voltage Pulses with Marx Generators

20.2.2025
Reading Time: 4 mins read
A A

This article based on Knowles Precision Devices blog explains how Marx generators play a critical role in generating high-voltage pulses by amplifying lower voltage DC inputs and capacitor guidelines for these type of applications.

Pulsed energy drives a diverse range of high-energy applications, from particle acceleration and fusion research to electromagnetic pulse (EMP) simulation. Marx generators play a pivotal role in generating these high-voltage pulses by amplifying lower voltage direct current (DC) inputs.

RelatedPosts

Knowles Doubles Capacitance of its Class I Ceramic C0G Capacitors

Knowles Releases High Q Non-Magnetic X7R MLCCs for Medical Imaging

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

In this comprehensive guide, we’ll delve into the intricacies of Marx generator operation, explore recent advancements that enhance their efficiency and reliability, and highlight the pivotal role of capacitors in shaping their performance.

Within Marx generators, capacitors are charged in parallel using a low-voltage power source. Resistors or inductors are employed to control the charging rate and isolate the capacitors, ensuring they remain charged until a discharge is initiated.

When the voltage across the capacitors reaches the breakdown voltage of the spark gaps (i.e., the point where discharge is initiated), the spark gaps conduct, creating a temporary series connection of the capacitors. This configuration merges the voltages of all the capacitors, resulting in an output voltage significantly higher than the original charging voltage. The rapid and simultaneous discharge generates high-voltage pulses.

Innovating for Efficient and Simple Marx Generators 

Ongoing research and development in Marx generator technology aims to simplify designs, enhance energy delivery efficiency, and broaden their functional capabilities.

Impedance-Matched Marx Generators (IMGs) are particularly suited for fusion and other next-generation pulsed-power systems due to their extended operational lifetimes, rapid rise times, and high repetition rates. Advancements in pulse shaping offer precise control over output waveforms, which is crucial for applications such as nonthermal plasma generation.

Integrating solid-state switching technology into Marx generators enhances their reliability without compromising their ability to meet the voltage and current requirements of advanced military and aerospace applications. For the same audience, there’s an ongoing effort to miniaturize Marx generators for space- and weight-constrained applications.  

Capacitor Functions in Marx Generators 

Capacitors play a crucial role in energy storage within Marx generators. When charged in parallel, each capacitor maintains the same voltage level while remaining isolated from the full output voltage until the discharge process commences. This configuration ensures efficient energy storage and controlled release.

During discharge, the series configuration enables capacitors to support voltage multiplication, resulting in the target output voltage. The output voltage is calculated as the sum of the voltages across each capacitor.

In conjunction with resistors, capacitors also influence discharge characteristics, such as the discharge rate. The RC time constant ensures that capacitors are fully charged before discharge begins, facilitating efficient energy transfer. Additionally, the capacitance value and configuration determine the speed at which energy can discharge through the load, providing control over pulse duration and shape. 

Selecting Marx Generators 

When choosing capacitors for Marx generators, consider: 

  • Voltage Rating: Choose capacitors rated 1.5 to 2 times the Marx generator’s maximum operating voltage to handle over-voltage and ensure reliability. 
  • Capacitance Value: Higher capacitance stores more energy but can increase pulse width and rise time. Match the capacitance to your output needs. 
  • Capacitor Type: Common capacitor types (i.e., ceramic, film, electrolytic) have inherent performance differences. Ceramic and film capacitors are ideal for high-frequency pulses due to their fast response and reliability under tough conditions. 
  • Operating Environment: Consider temperature and insulation needs to avoid performance issues in harsh conditions. 
  • Impedance Matching: Select capacitors with proper impedance for the best output voltage and performance. 

Explore Knowles’ specialty film capacitors designed specifically for pulse energy applications. With their superior stability, durability and precision under extreme conditions, these capacitors are the perfect solution for demanding high-energy systems.  

Related

Source: Knowles Precision Devices

Recent Posts

Vishay Releases Sulfur‑Resistant Chip Resistors

12.2.2026
6

Empower Releases High-Density Embedded Silicon Capacitors

11.2.2026
30

TDK Unveils 125C Compact DC Link Film Capacitors

11.2.2026
18

SCHURTER Releases Coin Cell Supercapacitors for Backup Power

10.2.2026
17

Skeleton Technologies Expands in U.S. to Power AI Data Centers

9.2.2026
21

Smoltek CNF-MIM Capacitors Hit 1,000x Lower Leakage

6.2.2026
21

Murata Opens New Ceramic Capacitor Manufacturing and R&D Center in Japan

5.2.2026
85

Murata Publishes Power Delivery Guide for AI Servers

4.2.2026
114

Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

3.2.2026
44

Upcoming Events

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version