Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

    Stackpole Offers High Voltage Plate Resistors up to 40KV

    How to Manage Supercapacitors Leakage Current and Self Discharge 

    Qualification of Commercial Supercapacitors for Space Applications

    Experimental Evaluation of Wear Failures in SMD Inductors

    Resonant Capacitors in High-Power Resonant Circuits

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

    Stackpole Offers High Voltage Plate Resistors up to 40KV

    How to Manage Supercapacitors Leakage Current and Self Discharge 

    Qualification of Commercial Supercapacitors for Space Applications

    Experimental Evaluation of Wear Failures in SMD Inductors

    Resonant Capacitors in High-Power Resonant Circuits

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Capacitors to Generate High Voltage Pulses with Marx Generators

20.2.2025
Reading Time: 4 mins read
A A

This article based on Knowles Precision Devices blog explains how Marx generators play a critical role in generating high-voltage pulses by amplifying lower voltage DC inputs and capacitor guidelines for these type of applications.

Pulsed energy drives a diverse range of high-energy applications, from particle acceleration and fusion research to electromagnetic pulse (EMP) simulation. Marx generators play a pivotal role in generating these high-voltage pulses by amplifying lower voltage direct current (DC) inputs.

RelatedPosts

Knowles Releases High Q Non-Magnetic X7R MLCCs for Medical Imaging

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

Knowles Releases Inductors for Mission-Critical RF Applications

In this comprehensive guide, we’ll delve into the intricacies of Marx generator operation, explore recent advancements that enhance their efficiency and reliability, and highlight the pivotal role of capacitors in shaping their performance.

Within Marx generators, capacitors are charged in parallel using a low-voltage power source. Resistors or inductors are employed to control the charging rate and isolate the capacitors, ensuring they remain charged until a discharge is initiated.

When the voltage across the capacitors reaches the breakdown voltage of the spark gaps (i.e., the point where discharge is initiated), the spark gaps conduct, creating a temporary series connection of the capacitors. This configuration merges the voltages of all the capacitors, resulting in an output voltage significantly higher than the original charging voltage. The rapid and simultaneous discharge generates high-voltage pulses.

Innovating for Efficient and Simple Marx Generators 

Ongoing research and development in Marx generator technology aims to simplify designs, enhance energy delivery efficiency, and broaden their functional capabilities.

Impedance-Matched Marx Generators (IMGs) are particularly suited for fusion and other next-generation pulsed-power systems due to their extended operational lifetimes, rapid rise times, and high repetition rates. Advancements in pulse shaping offer precise control over output waveforms, which is crucial for applications such as nonthermal plasma generation.

Integrating solid-state switching technology into Marx generators enhances their reliability without compromising their ability to meet the voltage and current requirements of advanced military and aerospace applications. For the same audience, there’s an ongoing effort to miniaturize Marx generators for space- and weight-constrained applications.  

Capacitor Functions in Marx Generators 

Capacitors play a crucial role in energy storage within Marx generators. When charged in parallel, each capacitor maintains the same voltage level while remaining isolated from the full output voltage until the discharge process commences. This configuration ensures efficient energy storage and controlled release.

During discharge, the series configuration enables capacitors to support voltage multiplication, resulting in the target output voltage. The output voltage is calculated as the sum of the voltages across each capacitor.

In conjunction with resistors, capacitors also influence discharge characteristics, such as the discharge rate. The RC time constant ensures that capacitors are fully charged before discharge begins, facilitating efficient energy transfer. Additionally, the capacitance value and configuration determine the speed at which energy can discharge through the load, providing control over pulse duration and shape. 

Selecting Marx Generators 

When choosing capacitors for Marx generators, consider: 

  • Voltage Rating: Choose capacitors rated 1.5 to 2 times the Marx generator’s maximum operating voltage to handle over-voltage and ensure reliability. 
  • Capacitance Value: Higher capacitance stores more energy but can increase pulse width and rise time. Match the capacitance to your output needs. 
  • Capacitor Type: Common capacitor types (i.e., ceramic, film, electrolytic) have inherent performance differences. Ceramic and film capacitors are ideal for high-frequency pulses due to their fast response and reliability under tough conditions. 
  • Operating Environment: Consider temperature and insulation needs to avoid performance issues in harsh conditions. 
  • Impedance Matching: Select capacitors with proper impedance for the best output voltage and performance. 

Explore Knowles’ specialty film capacitors designed specifically for pulse energy applications. With their superior stability, durability and precision under extreme conditions, these capacitors are the perfect solution for demanding high-energy systems.  

Related

Source: Knowles Precision Devices

Recent Posts

Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

3.10.2025
4

Electrolyte Selection and Performance in Supercapacitors

3.10.2025
1

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
14

How to Manage Supercapacitors Leakage Current and Self Discharge 

1.10.2025
19

Qualification of Commercial Supercapacitors for Space Applications

1.10.2025
25

Experimental Evaluation of Wear Failures in SMD Inductors

1.10.2025
24

Resonant Capacitors in High-Power Resonant Circuits

1.10.2025
20
a Schematic diagram of the BNT-based components constructed based on the entropy-increase strategy. b Digital photograph, cross-sectional SEM image, and EDS mappings of the MLCCs. c Unipolar P-E loops of MLCCs as a function of applied E. d Wrec and η of the MLCCs as a function of applied E. The comparison of (e) Wrec and η, (f) η and UF of the MLCCs with those of other recently reported state-of-the-art MLCCs. source: Nature Communications

Researchers Proposed Enhanced Energy Storage MLCC

1.10.2025
13

Polymer Tantalum Capacitors Beyond AEC-Q200 LEO Satellites

30.9.2025
39

Components Thermal and Frequency Challenges in 6G Base Stations

30.9.2025
12

Upcoming Events

Oct 8
11:00 - 12:00 CEST

PCB Online Shop – simply “Made in Germany” by Würth Elektronik

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version