Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Comment: Replacing conflict minerals in the electronics supply chain

5.10.2017
Reading Time: 2 mins read
A A

source: Electronics Weekly news

Could graphene be the answer to replacing conflict minerals in the electronics supply chain? writes Richard Wilson, consultant editor Electronics Weekly.

RelatedPosts

TDK Introduces High Current 80VDC Board-Mount EMI Filters

Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

One of the more problematic aspects of electronic component production is its dependence on sourcing ‘conflict minerals’.

These scarce metals such as tin, silver, tungsten and indium are both rare and difficult to extract. But production in small concentrations can be lucrative for African states. An unfortunate, and sadly inevitable, aspect of this is that trade in these minerals has been used to fund armed conflicts, such as in the Democratic Republic of the Congo.

The electronics industry is actively promoting ethical sources of supply for these scarce minerals, most notably through initiatives in the US and Europe. The US responded in 2009 with legislation such as the Congo Conflict Minerals Act, while in Europe a new law will become effective in 2021.

The focus of these legal initiatives is to require companies to provide the traceability necessary to ensure that their supply chains are free from conflict minerals. Many companies decided that the simplest compliance strategy would be to avoid any trade with the DRC. But there may be an alternative which could tackle the issue of conflict minerals head-on.

Carbon nanomaterials, such as graphene, could be used to replace many of the metals. Importantly, graphene is a strong material with good conductivity, similar to scarce metals.

A survey by Chalmers University of Technology in Gothenburg, Sweden, has studied the main applications of 14 different metals, and, by reviewing patents and scientific literature, has investigated the potential for replacing them by carbon nanomaterials.

Research into carbon nanomaterials has identified a new range of carbon-based materials with similar properties to metals. And as carbon is such a common and readily available material, there are none of the supply chain manipulation issues associated with the conflict minerals.

According to Rickard Arvidsson and Björn Sandén, researchers in environmental systems analysis at Chalmers University of Technology, 13 of the 14 scarce metals can be replaced by carbon nanomaterials in their most common applications.

The industry’s main focus has been the recycling and reuse of these problematic metals. However, now substitution is a potential alternative that has not been explored to the same extent. Carbon nanomaterials consist solely or mainly of carbon, and are strong materials with good conductivity.

Several scarce metals, found for example, in cables, thin screens, flame-retardants, corrosion protection and capacitors, have similar properties. The researchers say the metals that we are closest to being able to substitute are indium, gallium, beryllium and silver.

This has opened up the possibility of replacing scarce metals with carbon that can be extracted from biomass as part of a natural cycle. Now wouldn’t that be a technical achievement?

featured image source: NEC carbon nano brush

 

Related

Recent Posts

YAGEO Releases First to Market 750V Aluminum Capacitors

30.6.2025
40

Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

30.6.2025
19

Learn How Supercapacitors Enhance Power System in Knowles eBook

30.6.2025
15

TDK Releases Industry First 1uF 100V X7R MLCCs in 1608 Case

27.6.2025
20

YAGEO Extends Lifetime of its Aluminum SMD Chip Capacitors to 5500hrs at 125C/Ur

27.6.2025
24

Murata Releases Worlds First 10µF/50V Automotive MLCC in 0805 Size

26.6.2025
52

Advancements and Applications of Switch Capacitor Power Converters

25.6.2025
34

Samsung Delivers Silicon Capacitors to Marwell AI Systems

24.6.2025
63

June 2025 Interconnect, Passives and Electromechanical Components Market Insights

23.6.2025
63

Smolteks CNF MIM Capacitor Break 1 µF/mm²

19.6.2025
41

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version