Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Wk 26 Electronics Supply Chain Digest

    Learn How Supercapacitors Enhance Power System in Knowles eBook

    TDK Releases Industry First 1uF 100V X7R MLCCs in 1608 Case

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Wk 26 Electronics Supply Chain Digest

    Learn How Supercapacitors Enhance Power System in Knowles eBook

    TDK Releases Industry First 1uF 100V X7R MLCCs in 1608 Case

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Ferroelectrics May Boost Storage Energy Density of Capacitors

14.2.2020
Reading Time: 3 mins read
A A

Mixing a trace of an additional element into a BaTiO3 MLCC class II dielectric material used in electronics could dramatically improve the material’s properties and increase of energy density.

The performance of a capacitor, a component that is essential to nearly every electronic device, depends in part on the amount of energy that the material between the capacitor’s plates can store. Preliminary results presented at the Fundamental Physics of Ferroelectrics and Related Materials conference held last month in Silver Spring, Maryland, suggest a new way of optimizing this energy storage capacity. Researchers showed that by replacing some of the intrinsic atoms in a crystal with atoms of a different element, they could generate an additional electric field inside the material that boosted the energy storage by 50%.

RelatedPosts

Sumida Announces New DC Common Mode Choke Coil Series

KYOCERA AVX Releases New 3dB Hybrid Couplers

SCHURTER Unveils High Voltage Fuses for EV Applications

A voltage applied across the plates of a capacitor produces an electric field in the thin layer of material between the plates. The stronger the field produced for a given voltage, the more energy the field can store, and the more efficient the capacitor. So high energy storage capacity is an important goal for the material in a capacitor.

A ferroelectric material, a common choice to fill capacitors, is analogous to a ferromagnetic material like iron, except that it produces electric fields. Inside a ferroelectric, molecular-scale electric dipoles interact and point in the same direction, as long as the system is below the ferroelectric transition temperature. If an external electric field is applied, the dipoles can collectively align with it.

Researchers have previously shown that if you replace a small fraction of the titanium atoms in barium titanate (a ferroelectric) with atoms of another metal, then so-called defect dipoles form. Each of these new dipoles is composed of a replacement metal atom paired with a neighboring oxygen vacancy. These dipoles are too far apart to spontaneously align with one another, but they can still align with an external electric field. However, they require high temperatures or long times to do so because the oxygen vacancy has to “jump” from one site to another around the metal atom in order to change the dipole orientation. In contrast, each intrinsic dipole changes orientation more easily, through small shifts in atomic positions in the crystal lattice. 

Researchers have previously observed the effects of defect dipoles but had not tried to optimize them to improve specific material properties for use in devices. To improve energy storage in barium titanate, Pierre-Eymeric Janolin of Paris-Saclay University and his graduate student Zechau Li replaced 0.4% of the titanium with copper. They heated the modified material to about 200 °C and held it in a strong electric field (up to 23 kV/cm) for two hours to align the defect dipoles. Then they cooled it below the ferroelectric transition temperature of about 125 °C. At this temperature, the defect dipoles remained fixed and provided a constant, “baked-in” field that increased the energy storage density by up to 50%, Janolin reported at the meeting.

The results Janolin presented are based on the first set of experiments, which used barium titanate because it’s a standard ferroelectric. Janolin says that he and Li were “very surprised to see that on a model material and without much effort” they were able to improve the energy storage density so dramatically. He says there is still a long list of tests to carry out in order to verify the results, and he’s hopeful that they will be able to improve energy storage even more.

The duo is also using defect dipoles to modify other properties of ferroelectrics, such as piezoelectricity—the ability to expand or contract in response to a voltage—which is exploited in products such as microphones, transducers, and actuators. Their long-term goal is to learn how to control the properties of barium titanate and related materials in order to improve their performance in devices.

Related

Source: Physics.org

Recent Posts

YAGEO Releases First to Market 750V Aluminum Capacitors

30.6.2025
19

Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

30.6.2025
8

Learn How Supercapacitors Enhance Power System in Knowles eBook

30.6.2025
5

TDK Releases Industry First 1uF 100V X7R MLCCs in 1608 Case

27.6.2025
12

YAGEO Extends Lifetime of its Aluminum SMD Chip Capacitors to 5500hrs at 125C/Ur

27.6.2025
16

Murata Releases Worlds First 10µF/50V Automotive MLCC in 0805 Size

26.6.2025
44

Advancements and Applications of Switch Capacitor Power Converters

25.6.2025
29

Samsung Delivers Silicon Capacitors to Marwell AI Systems

24.6.2025
56

Smolteks CNF MIM Capacitor Break 1 µF/mm²

19.6.2025
39

Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

19.6.2025
23

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version