Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    YAGEO Unveils Compact 3.6kW LLC Transformer for OBC EV Charging

    Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

    KYOCERA Releases Shielded Board-to-Board Connectors for Reliable EMI Protection

    Wk 41 Electronics Supply Chain Digest

    Samtec Expands Connector Severe Environment Testing Offering

    Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

    YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

    Enhancing Energy Density in Nanocomposite Dielectric Capacitors

    Advances in the Environmental Performance of Polymer Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    YAGEO Unveils Compact 3.6kW LLC Transformer for OBC EV Charging

    Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

    KYOCERA Releases Shielded Board-to-Board Connectors for Reliable EMI Protection

    Wk 41 Electronics Supply Chain Digest

    Samtec Expands Connector Severe Environment Testing Offering

    Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

    YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

    Enhancing Energy Density in Nanocomposite Dielectric Capacitors

    Advances in the Environmental Performance of Polymer Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

IEEE Awarded Murata for its Contribution to Development of MLCC Nickel Electrodes

8.3.2024
Reading Time: 3 mins read
A A

Murata Manufacturing Co., Ltd. has been awarded an IEEE Milestone by the IEEE, the world’s largest international academic society in the electrical and electronics fields, for contributing to the development of industry with the commercialization of multilayer ceramic capacitors using nickel inner electrodes (hereinafter “Ni-MLCCs”).

The IEEE Milestones program was established in 1983 to recognize historical achievements among groundbreaking innovations in the electrical and electronics fields.

RelatedPosts

Experimental Evaluation of Wear Failures in SMD Inductors

Resonant Capacitors in High-Power Resonant Circuits

Components Thermal and Frequency Challenges in 6G Base Stations

These are achievements for which more than 25 years have passed since being developed and which have contributed greatly to the development of society and industry.

About This Award

MLCCs were first used as products in the world in 1966. At that time, expensive precious metals were used to make the inner electrodes of MLCCs, resulting in a high unit cost. Accordingly, the applications for which they were used were limited. There was a technical challenge to replace precious metals with inexpensive metals. It was necessary to develop a dielectric ceramic material that could be sintered at a low oxygen concentration to avoid metal oxidation. Accordingly, Murata adopted an inexpensive nickel metal. Together with this, we developed a dielectric ceramic material. We then developed Ni-MLCCs combining quality and low price in 1973. We spent about eight years putting the material into practical use and building a production process. We began mass-producing Ni-MLCCs in 1982.

Ni-MLCCs are currently used in a wide range of markets including automobiles, home appliances, industrial equipment, and medical equipment in addition to communications equipment as an essential product for electronics. In this way, they are contributing to the development of industry. Murata has pursued downsizing, improvement in capacitance density, a reduction in manufacturing costs, and other improvements according to each application. We now supply more than 1 trillion Ni-MLCCs to customers around the world every year.

We would like to express our gratitude to our customers, suppliers, and all our other stakeholders for their tremendous support on the occasion of being awarded an IEEE Milestone. We will continue to promote innovation that leads to the provision of new value, support people’s lives by providing industry-leading innovative products and technologies, and move forward with the aim of continually increasing our corporate value.

Features of Ni-MLCCs

  • Outstanding high-frequency characteristics and high-density mounting:
  • In addition to outstanding frequency characteristics suitable for high-speed IC power supply circuits and high-frequency RF circuits, our Ni-MLCCs are small, have high capacitance density, and can be surface-mounted. Therefore, they contribute to the higher integration and greater communication speed of information terminals such as mobile phones.
  • High withstand voltage and reliability:
  • Ni-MLCCs have the outstanding withstand voltage and reliability required in the power electronics field. They are used in various power supply circuits mainly in car electronics.

Related Site
List of Companies That Have Been Awarded an IEEE Milestone in the Past (IEEE)
https://ieee-jp.org/en/activity/jchc/milestone_jusho.html

Related

Source: Murata

Recent Posts

Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

10.10.2025
24

Enhancing Energy Density in Nanocomposite Dielectric Capacitors

9.10.2025
24

Advances in the Environmental Performance of Polymer Capacitors

8.10.2025
50

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

8.10.2025
22

Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

8.10.2025
14

Paumanok Releases Capacitor Foils Market Report 2025-2030

7.10.2025
22

Modelithics Welcomes CapV as a Sponsoring MVP

7.10.2025
4

Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

3.10.2025
25

Electrolyte Selection and Performance in Supercapacitors

3.10.2025
35

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
25

Upcoming Events

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version