Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    What Track Width To Use When Routing PCB

    YAGEO Unveils PulseChip LAN Transformer

    Bourns Releases Automotive Impedance Matching Transformer

    Stackpole Offers Affordable Current Sense Chip Resistors

    Knowles Extends Range and Performance of C0G MLCC Capacitors

    May 2025 ECST Component Results Show Moderating Decline in Sales Sentiment

    Panasonic Releases New Aluminum Hybrid Capacitors with High Ripple Current in Compact Size

    5th PCNS Conference Registration Now Open!

    YAGEO Introduces Automotive Supercapacitors for Stable BMS in EVs

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    What Track Width To Use When Routing PCB

    YAGEO Unveils PulseChip LAN Transformer

    Bourns Releases Automotive Impedance Matching Transformer

    Stackpole Offers Affordable Current Sense Chip Resistors

    Knowles Extends Range and Performance of C0G MLCC Capacitors

    May 2025 ECST Component Results Show Moderating Decline in Sales Sentiment

    Panasonic Releases New Aluminum Hybrid Capacitors with High Ripple Current in Compact Size

    5th PCNS Conference Registration Now Open!

    YAGEO Introduces Automotive Supercapacitors for Stable BMS in EVs

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Is GaN Replacing Silicon? The Applications and Limitations of Gallium Nitride in 2019

25.1.2019
Reading Time: 3 mins read
A A

Source: All About Circuits article

by Robin Mitchell. GaN transistors are, in general terms, faster and more efficient than classic silicon devices. But if that’s the case, what limitations are keeping it from unseating silicon from its throne? Silicon technology is approaching its limits. Meanwhile, there’s a continuing need for faster, more efficient circuits. One of the paths forward from this point is for researchers and companies alike to look towards different materials to produce the devices of tomorrow.

RelatedPosts

What Track Width To Use When Routing PCB

YAGEO Unveils PulseChip LAN Transformer

Bourns Releases Automotive Impedance Matching Transformer

One material in particular that has caught the attention of the industry is gallium nitride or GaN, which is already gaining increasing use in optoelectronics.

Here’s a look at the current state of GaN.

GaN vs. Silicon
When looking at the physical characteristics of GaN, it is easy to see why it is a very promising semiconductor. GaN is a binary III/V direct bandgap semiconductor whose bandgap is 3.4eV—several times greater than that of silicon whose band gap is only 1.1eV.

Featured Image: A GaN Wurtzite polyhedron. Image used courtesy of Solid_State [CC BY-SA 4.0]

This wider bandgap makes GaN highly suitable for optoelectronics and is key to producing devices such as UV LEDs where frequency doubling is impractical. Not only do GaN semiconductors have 1000 times the electron mobility than silicon they are also able to operate at higher temperatures while still maintaining their characteristics (up to 400 degrees Celsius). These combined characteristics would make GaN highly desirable in high frequency (THz), high temperature, and high power environments.

The Problem with GaN

While GaN devices are widely used in the optoelectronics industry (such as LEDs), they are not commonly used in transistors for several reasons. One of the biggest hurdles in GaN transistors is that GaN devices are typically depletion type devices which are ON when the gate-source voltage is zero and this is a problem as power circuitry and logic rely on both normally on and normally off transistors.

Image used courtesy of Panasonic

Currently, there are several proposals to create GaN devices that are OFF when the gate-source voltage is zero including the addition of fluoride ions, an MIS-type gate stack, a combined GaN and Si device, and the use of a P-type material on-top of the  AlGaN/GaN heterojunction.

Current GaN Applications

While the number of devices incorporating GaN transistors is small several companies are making attempts to increase the interest in GaN-based products. For example, Panasonic have used their patented X-GaN technology to produce GaN-based transistors in a number of applications including power converters (with an efficiency of up to 99%) and replacements for transistors in motor configurations. Their X-GaN transistors can also be used to replace MOSFET and freewheel diodes completely which allows for energy to be conserved as well as reducing the physical size of the circuit.

 

Image courtesy military areospace

GaN transistors are also finding their way into radio applications due to their superior frequency characteristics with Comtech PST Corp. producing their model BPMC928109-1000 which is a GaN amplifier for use in speed cameras, air traffic control, and even military applications requiring frequencies between 9.2-10GHz at 10kW of power.

Will GaN Replace Silicon?

GaN has many serious advantages over silicon, being more power efficient, faster, and even better recovery characteristics. However, while GaN may seem like a superior choice it won’t be replacing silicon in all applications for a while.

The first hurdle that needs to be overcome is the depleted nature of GaN transistors; effective power and logic circuits require transistors of both normally-on and normally-off types. While normally-off GaN transistors can be produced, they either rely on a typical silicon MOSFET or they require special additional layers that make them hard to shrink. The inability to produce GaN transistors at the same scale as current silicon transistors also means they are impractical for use in CPUs and other microcontrollers.

The second issue with GaN transistors is that the only alternative known method for producing an enhanced GaN transistor (at the time of writing) is with the use of the patented Panasonic method of using the additional AlGaN layer. This means that any innovation involving that transistor type will rely on Panasonic until other methods can be researched.

Work on GaN devices has been around since early 2000s, but GaN transistors are still in their infancy. While there is no doubt that they will replace silicon transistors in power applications within the next decade, they are still far from being used in data processing applications.

However, if GaN devices can be miniaturized (smaller than 100nm features) then not only can they be used to replace silicon for better power efficiency but they could also operate at far greater speeds and allow the power of processors to continue to increase.

Related

Recent Posts

H2-Assisted Thermal Treatment of Electrode Materials Increases Supercapacitors Energy Density

13.5.2025
14

Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

12.5.2025
40

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
78

3D Printing of Passive Components from Manufacturer Perspective

26.4.2025
49

Hybrid Electrochemical Electrolytic Capacitor Provides High Frequency and High Capacitance Performance

25.4.2025
73

Supercapacitor Separator with High Ionic Conductivity Enables Line-Filter Applications at High Power

21.3.2025
50

Interlacing Strain Engineering Boost Energy Density of MLCCs

12.2.2025
85

Researchers Developed BaTiO3 based MLCC Material with High Energy Density at High Temperature Range

21.1.2025
107
A film a few atoms thick of non-crystalline niobium phosphide conducts better through the surface to make the material, as a whole, a better conductor. | Il-Kwon Oh / Asir Khan

Researchers Developed High Conductive Nanowires

20.1.2025
57

CNF-MIM Capacitors Benefits vs Deep Trench Capacitors

9.1.2025
128

Upcoming Events

Jun 24
17:00 - 18:00 CEST

Ultra-Compact and Efficient Switched-Capacitor Power Converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version