Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Wk 40 Electronics Supply Chain Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

    Stackpole Offers High Voltage Plate Resistors up to 40KV

    How to Manage Supercapacitors Leakage Current and Self Discharge 

    Qualification of Commercial Supercapacitors for Space Applications

    Experimental Evaluation of Wear Failures in SMD Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Wk 40 Electronics Supply Chain Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

    Stackpole Offers High Voltage Plate Resistors up to 40KV

    How to Manage Supercapacitors Leakage Current and Self Discharge 

    Qualification of Commercial Supercapacitors for Space Applications

    Experimental Evaluation of Wear Failures in SMD Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Is GaN Replacing Silicon? The Applications and Limitations of Gallium Nitride in 2019

25.1.2019
Reading Time: 3 mins read
A A

Source: All About Circuits article

by Robin Mitchell. GaN transistors are, in general terms, faster and more efficient than classic silicon devices. But if that’s the case, what limitations are keeping it from unseating silicon from its throne? Silicon technology is approaching its limits. Meanwhile, there’s a continuing need for faster, more efficient circuits. One of the paths forward from this point is for researchers and companies alike to look towards different materials to produce the devices of tomorrow.

RelatedPosts

Wk 40 Electronics Supply Chain Digest

Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

Electrolyte Selection and Performance in Supercapacitors

One material in particular that has caught the attention of the industry is gallium nitride or GaN, which is already gaining increasing use in optoelectronics.

Here’s a look at the current state of GaN.

GaN vs. Silicon
When looking at the physical characteristics of GaN, it is easy to see why it is a very promising semiconductor. GaN is a binary III/V direct bandgap semiconductor whose bandgap is 3.4eV—several times greater than that of silicon whose band gap is only 1.1eV.

Featured Image: A GaN Wurtzite polyhedron. Image used courtesy of Solid_State [CC BY-SA 4.0]

This wider bandgap makes GaN highly suitable for optoelectronics and is key to producing devices such as UV LEDs where frequency doubling is impractical. Not only do GaN semiconductors have 1000 times the electron mobility than silicon they are also able to operate at higher temperatures while still maintaining their characteristics (up to 400 degrees Celsius). These combined characteristics would make GaN highly desirable in high frequency (THz), high temperature, and high power environments.

The Problem with GaN

While GaN devices are widely used in the optoelectronics industry (such as LEDs), they are not commonly used in transistors for several reasons. One of the biggest hurdles in GaN transistors is that GaN devices are typically depletion type devices which are ON when the gate-source voltage is zero and this is a problem as power circuitry and logic rely on both normally on and normally off transistors.

Image used courtesy of Panasonic

Currently, there are several proposals to create GaN devices that are OFF when the gate-source voltage is zero including the addition of fluoride ions, an MIS-type gate stack, a combined GaN and Si device, and the use of a P-type material on-top of the  AlGaN/GaN heterojunction.

Current GaN Applications

While the number of devices incorporating GaN transistors is small several companies are making attempts to increase the interest in GaN-based products. For example, Panasonic have used their patented X-GaN technology to produce GaN-based transistors in a number of applications including power converters (with an efficiency of up to 99%) and replacements for transistors in motor configurations. Their X-GaN transistors can also be used to replace MOSFET and freewheel diodes completely which allows for energy to be conserved as well as reducing the physical size of the circuit.

 

Image courtesy military areospace

GaN transistors are also finding their way into radio applications due to their superior frequency characteristics with Comtech PST Corp. producing their model BPMC928109-1000 which is a GaN amplifier for use in speed cameras, air traffic control, and even military applications requiring frequencies between 9.2-10GHz at 10kW of power.

Will GaN Replace Silicon?

GaN has many serious advantages over silicon, being more power efficient, faster, and even better recovery characteristics. However, while GaN may seem like a superior choice it won’t be replacing silicon in all applications for a while.

The first hurdle that needs to be overcome is the depleted nature of GaN transistors; effective power and logic circuits require transistors of both normally-on and normally-off types. While normally-off GaN transistors can be produced, they either rely on a typical silicon MOSFET or they require special additional layers that make them hard to shrink. The inability to produce GaN transistors at the same scale as current silicon transistors also means they are impractical for use in CPUs and other microcontrollers.

The second issue with GaN transistors is that the only alternative known method for producing an enhanced GaN transistor (at the time of writing) is with the use of the patented Panasonic method of using the additional AlGaN layer. This means that any innovation involving that transistor type will rely on Panasonic until other methods can be researched.

Work on GaN devices has been around since early 2000s, but GaN transistors are still in their infancy. While there is no doubt that they will replace silicon transistors in power applications within the next decade, they are still far from being used in data processing applications.

However, if GaN devices can be miniaturized (smaller than 100nm features) then not only can they be used to replace silicon for better power efficiency but they could also operate at far greater speeds and allow the power of processors to continue to increase.

Related

Recent Posts

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
19
a Schematic diagram of the BNT-based components constructed based on the entropy-increase strategy. b Digital photograph, cross-sectional SEM image, and EDS mappings of the MLCCs. c Unipolar P-E loops of MLCCs as a function of applied E. d Wrec and η of the MLCCs as a function of applied E. The comparison of (e) Wrec and η, (f) η and UF of the MLCCs with those of other recently reported state-of-the-art MLCCs. source: Nature Communications

Researchers Proposed Enhanced Energy Storage MLCC

1.10.2025
14

Improving SMPS Performance with Thermal Interface Material

30.9.2025
11

Development of Nitrogen-Doped Graphene Supercapacitors 

30.9.2025
9

Flaked Tantalum Powders: High Capacitance Powders for High Reliable Tantalum Capacitors

29.9.2025
14

Life Cycle Assessment of a Graphene-Based Supercapacitor

26.9.2025
14

Advancements in Flexible End Terminations for Robust MLCCs in EV

26.9.2025
36

Researchers Developed Reduced Graphene Oxide (rGO) High Energy Density Graphene Supercapacitors

18.9.2025
33

Researchers Enhanced 2D Ferromagnets Performance

16.9.2025
9

Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

19.8.2025
21

Upcoming Events

Oct 8
11:00 - 12:00 CEST

PCB Online Shop – simply “Made in Germany” by Würth Elektronik

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version