Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    PCNS 2025 Final Program Announced!

    DigiKey Expands Inventory with Over 32,000 Stocking NPIs in Q2 2025

    YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

    European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

    TDK Announced Wide Frequency Automotive Wirewound POC Inductors

    Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

    Bourns Announced Shielded Power Inductor with High Saturation and Low Radiation

    Würth Elektronik Expands MagI³C with Variable Step-Down Modules

    KYOCERA AVX Releases 600MHz Band71 Compact SAW Duplexer

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    PCNS 2025 Final Program Announced!

    DigiKey Expands Inventory with Over 32,000 Stocking NPIs in Q2 2025

    YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

    European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

    TDK Announced Wide Frequency Automotive Wirewound POC Inductors

    Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

    Bourns Announced Shielded Power Inductor with High Saturation and Low Radiation

    Würth Elektronik Expands MagI³C with Variable Step-Down Modules

    KYOCERA AVX Releases 600MHz Band71 Compact SAW Duplexer

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Jianghai-Europe Offers Environmentally Friendly High Energy-C Hybrid LiC Capacitor Solutions for EV Applications

5.1.2022
Reading Time: 3 mins read
A A

For electrically powered vehicles, energy storage is one of the biggest challenges. Jianghai has been manufacturing lithium-ion capacitors (LiC) from the Energy-C family for years, which are increasingly being used for e-mobility as described in its technical note written by Alexander Schedlock, Jianghai Europe Electronic Components GmbH.

Lithium-ion capacitors (LiC) are used for e-mobility application in two different concepts – see Figure on right.

RelatedPosts

The Benefits of Using Film Capacitor Modules For Modern Power Semiconductors

Jianghai Europe Introduces Next Generation of Li-ion Supercapacitors with Enhanced Energy Density

Jianghai Releases New Series of Leaded Hybrid Polymer Capacitors

While in the first concept the properties of the high number of cycles and fast charging of LiC are primarily used (e.g., for energy recuperation when braking, support during acceleration) and thus helps to reduce the size of the heavy and large battery and to support it electrically, the second concept will be presented here:

The development goals for electric vehicles are largely similar to the requirements for vehicles with combustion engines: long range and fast charging are so much in focus that the ecological benefits run the risk of getting lost. Concessions to the technology require the necessary thermal management for the battery, the losses of the battery charging system and the relatively low charge and discharge cycle number of batteries available today. The size and weight of the batteries, their ecologically questionable production including the use of rare raw materials and the risk of fire in the event of destruction or malfunction are unfavorable.

Advantages of Li-C hybrid capacitors

  • Energy storage in an electric field rather than chemical reactions inside a battery
  • Up to 500,000 charge and discharge cycles
  • Significantly higher power density
  • Intrinsic safety: Even in the event of mechanical damage, electrical overload or operation at over- or low temperatures, there is no risk of fire
  • Doping with lithium ions conserves resources and solves the supply problem with the valuable raw material lithium
  • Very high charge and discharge currents due to low loss electrolytes and electrodes
  • Weight reduction: a halving of the mass compared to a battery of the same volume is possible
  • Charging times in the minute range

Example
A closer look at the development goals of electric cars reveals that high ranges rarely occur in practice in the everyday operation of many vehicles. Statistically, most (small) vehicles drive a maximum of 25 km to work or cover only approximately the same distance for purposes such as shopping, school and kindergarten trips1.

Let‘s illustrate this with the example of a common 75 kWh battery with dimensions L x W x H = 2670mm * 1540mm * 150mm. A single cell package of this battery has dimensions L x W x H = 69 mm * 31 mm * 80 mm with a capacity of 5.2 kWh. In addition, there is the volume of the necessary electronics for balancing, charge management, safety and thermal monitoring. For simplicity, however, here we consider only a single cell package
without control and monitoring. In the same volume, 32 cells of a lithium-ion capacitor (LiC) from Jianghai could be placed (series HAA, e.g. 16,000 F) including the mounting frames.

The storable energy is 693Wh. This amount of energy corresponds to about 15% of the energy stored in the battery cell package. If we assume the range of a battery-powered vehicle at 580 km, a vehicle designed with capacitors would only achieve around 15% of the range: ~80 km (with a single charge). This range is more than sufficient for a variety of applications. With existing charging stations, a recharge would be possible within minutes,
a shorter time than a purchase in the supermarket. The road block lies in the acceptance of the alternative usage concept. Electric vehicles based only on capacitors are not an alternative for long-distance applications. However, these are today‘s battery-powered vehicles on honest view only to a limited extent.

CONCLUSION

Jianghai sees two important, different usage concepts with two different marketing strategies. The capacitor technology opens up the opportunity for very cost-effective and environmentally friendly second cars for short distances, at the latest when the battery vehicles have to be put under discussion in the view of increasing environmental and sustainability requirements.

The hybrid solution helps long-distance vehicles to save energy and to extend their range. With regard to Europe, it should be noted that the technology presented here is already in use in China.

Related

Source: Jianghai-Europe

Recent Posts

PCNS 2025 Final Program Announced!

31.7.2025
3

European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

30.7.2025
5

TDK Announced Wide Frequency Automotive Wirewound POC Inductors

30.7.2025
2

Switched Capacitor Converter Explained

28.7.2025
12

Samsung Releases 1000V 1812 X7R 100nF MLCC for Electric Vehicles

28.7.2025
16

Samsung Electro-Mechanics Releases Molded MLCC Capacitors

28.7.2025
22

Researchers Demonstrated 200C Polymer Film Dielectric

28.7.2025
10

Researchers Demonstrated Zinc-Ion Based Photo-Supercapacitor

28.7.2025
9

TDK Presents Various Large-Size Ferrite Cores for Industrial Applications

25.7.2025
16
Comparative display of a grain size and domain structure; b free energy; c P-E loops after high-entropy ceramics (HECs) and PGS design. source: Nature Communications  ISSN 2041-1723

Researchers Propose Novel MLCC Dielectric Design to Increase Energy Storage Capacity

24.7.2025
39

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version