Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    October 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

    Wk 43 Electronics Supply Chain Digest

    Samsung Releases Automotive Molded 2220 1kV C0G MLCC

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    VINATech Offers Smallest 100µF Al-Hybrid Capacitor

    Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

    Power Inductors Future: Minimal Losses and Compact Designs

    Bourns Unveils Automotive 3 Watt Gate Driver Transformer

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    October 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

    Wk 43 Electronics Supply Chain Digest

    Samsung Releases Automotive Molded 2220 1kV C0G MLCC

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    VINATech Offers Smallest 100µF Al-Hybrid Capacitor

    Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

    Power Inductors Future: Minimal Losses and Compact Designs

    Bourns Unveils Automotive 3 Watt Gate Driver Transformer

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Power Integrations Reduces AC/DC Converter Size by 40%, Halves the Size of Bulk Electrolytic capacitors

6.4.2021
Reading Time: 3 mins read
A A

Power Integrations has developed a novel way to shrink the size of universal input AC-DC converters without increasing switching frequency. The MinE-CAP IC halves the size of high-voltage bulk electrolytic capacitors, resulting in up to 40% adapter size reduction while increasing system efficiency in chargers up to 65 W.

Power Integrations, the leader in high-voltage integrated circuits for energy-efficient power conversion, announced the MinE-CAP™ IC for high power density, universal input AC-DC converters. By halving the size of the high-voltage bulk electrolytic capacitors required in offline power supplies, this new type of IC enables a reduction in adapter size of up to 40%. The MinE-CAP device also dramatically reduces in-rush current making NTC thermistors unnecessary, increasing system efficiency and reducing heat dissipation.

RelatedPosts

October 2025 Interconnect, Passives and Electromechanical Components Market Insights

Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

Wk 43 Electronics Supply Chain Digest

Comments Power Integrations’ product marketing director, Chris Lee: “The MinE-CAP will be a game-changer for compact chargers and adapters. Electrolytic capacitors are physically large, occupy a significant fraction of the internal volume and often constrain form factor options – particularly minimum thickness – of adapter designs. The MinE-CAP IC allows the designer to use predominantly low voltage rated capacitors for a large portion of the energy storage, which shrinks the volume of those components linearly with voltage. USB PD has driven a major market push towards small 65 W chargers and many companies have concentrated on increasing switching frequency to reduce the size of the flyback transformer. MinE-CAP provides more volume saving than doubling the switching frequency, while actually increasing system efficiency.”

Typical Application Schematic

The MinE-CAP leverages the small size and low RDSon of PowiGaN™ gallium nitride transistors to actively and automatically connect and disconnect segments of the bulk capacitor network depending on AC line voltage conditions. Designers using MinE-CAP select the smallest high-line rated bulk capacitor required for high AC line voltages, and allocate most of the energy storage to lower voltage capacitors that are protected by the MinE-CAP until needed at low AC line. This approach dramatically shrinks the size of input bulk capacitors without compromising output ripple, operating efficiency, or requiring redesign of the transformer.

Conventional power conversion solutions reduce power supply size by increasing switching frequency to allow the use of a smaller transformer. The innovative MinE-CAP IC achieves just as significant overall power supply size reduction while using fewer components and avoiding the challenges of higher EMI and the increased transformer/clamp dissipation challenges associated with high-frequency designs. Applications include smart mobile chargers, appliances, power tools, lighting and automotive.

Said Bhaskar Thiagaragan, Director of Power Integrations India Ltd.: “MinE-CAP ICs are excellent for all locations with wide ranging input voltages. In India we often design for voltages from 90 VAC to 350 VAC, with a generous surge de-rating above that. Engineers here often complain about the forest of expensive high-voltage capacitors required. MinE-CAP dramatically reduces the number of high-voltage storage components, and shields lower voltage capacitors from the wild mains voltage swings, substantially enhancing robustness while reducing system maintenance and product returns.

Related

Source: Power Integrations

Recent Posts

Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

27.10.2025
17

Samsung Releases Automotive Molded 2220 1kV C0G MLCC

23.10.2025
39

How to Select Ferrite Bead for Filtering in Buck Boost Converter

23.10.2025
33

VINATech Offers Smallest 100µF Al-Hybrid Capacitor

23.10.2025
33

Power Inductors Future: Minimal Losses and Compact Designs

22.10.2025
40

Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

21.10.2025
43

Murata Integrates Component Models into Cadence EDA Tools

21.10.2025
41

High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

15.10.2025
27

KYOCERA AVX Expands Stacked MLCC Capacitors Offering

14.10.2025
47

Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

13.10.2025
39

Upcoming Events

Oct 30
11:00 - 12:00 CET

Space Ceramic Capacitors with Flexible Testing

Nov 4
10:00 - 11:00 PST

Design and Stability Analysis of GaN Power Amplifiers using Advanced Simulation Tools

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version