Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Development of Nitrogen-Doped Graphene Supercapacitors 

    Layer-by-Layer Fabrication of Thin Polypropylene-based Dielectrics

    Kyocera Launches New SAW Filter for GNSS 1.6GHz Satellite Communications

    Reliability of E-Textile Conductive Paths and Passive Component Interfaces

    Flaked Tantalum Powders: High Capacitance Powders for High Reliable Tantalum Capacitors

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Design of High Precision Integrated Resistive Voltage Dividers

    Textile-Based Antennas

    Space Evaluation Testing on SAW Filter Based on Piezo-On-Insulator Technology

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Development of Nitrogen-Doped Graphene Supercapacitors 

    Layer-by-Layer Fabrication of Thin Polypropylene-based Dielectrics

    Kyocera Launches New SAW Filter for GNSS 1.6GHz Satellite Communications

    Reliability of E-Textile Conductive Paths and Passive Component Interfaces

    Flaked Tantalum Powders: High Capacitance Powders for High Reliable Tantalum Capacitors

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Design of High Precision Integrated Resistive Voltage Dividers

    Textile-Based Antennas

    Space Evaluation Testing on SAW Filter Based on Piezo-On-Insulator Technology

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Role of High-Q Ceramic Filters to Overcome GNSS Jamming

19.6.2025
Reading Time: 3 mins read
A A

This article based on Knowles Precision Devices blog explains how high-Q ceramic filters help engineers to overcome GNSS jamming.

Engineers are integrating receivers for Global Navigation Satellite Systems (GNSS), such as GPS and Galileo, into various systems, including autonomous vehicles and precision agriculture. However, this integration has led to a crowded RF environment, making it challenging to maintain signal integrity.

RelatedPosts

Knowles Releases High Q Non-Magnetic X7R MLCCs for Medical Imaging

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

Knowles Releases Inductors for Mission-Critical RF Applications

Such receivers often operate in environments saturated with electronic interference, making them susceptible to jamming—the intentional or unintentional transmission of radio signals that disrupt GNSS reception. Even low-power jamming can degrade positioning accuracy or completely block signal acquisition.

High-Q ceramic bandpass filters present a technical opportunity to develop jamming-resistant GNSS for mission-critical applications.

How Interference Impacts GNSS Signal Integrity

GNSS receivers rely on isolated and amplified satellite signals, starting at approximately -130 dBm. In congested RF environments, adjacent-band signals and deliberate jamming can easily overpower these weak inputs.

Bandpass filters play a crucial role in mitigating GNSS jamming by isolating legitimate satellite signals from interference. These filters are designed to allow frequencies within the GNSS operational bands (e.g., GPS L1/L2, Galileo E1/E5) while attenuating out-of-band noise and intentional jamming signals.

Surface Acoustic Wave (SAW) filters, with their low cost and compact form factor, are a natural choice for GNSS receivers. However, they struggle in high-interference conditions due to limited out-of-band rejection and broader skirts.

While SAW filters continue to meet performance requirements for consumer devices and systems, high-Q ceramic filters offer a robust upgrade for mission-critical applications that demand mechanical and thermal stability, predictable tuning characteristics, and long-term reliability.

The significance of Q Factor in GNSS Filtering 

Q factor, a shorthand figure of merit (FOM) for RF filters, is expressed as the ratio of stored versus lost energy per oscillation cycle. It quantifies specifications such as the steepness of skirts (selectivity) and insertion loss. As Q factor decreases, losses through a resonator increase, and this increase accelerates with frequency for lower values of resonator Q.

Knowles’ high-Q ceramic filters excel over many alternatives by offering:

  • Sharper skirts: Enabling precise filtering near band edges.
  • High rejection: Attenuating out-of-band signals and jammers.
  • Low insertion loss: Preserving the integrity of weak GNSS signals.

These attributes are particularly crucial in military and aerospace platforms where GNSS must function reliably despite hostile electronic countermeasures. High-Q ceramic filters enable precise frequency discrimination, ensuring only legitimate GNSS signals reach the receiver.

Consider scenarios like a drone conducting reconnaissance in a contested area or an autonomous harvester navigating with sub-inch precision on a farm. Both require high signal clarity. Knowles’ high-Q ceramic filters, such as the GPS L1, are engineered for use in L-band GNSS applications. These filters demonstrate low passband insertion loss (<2.0 dB), high out-of-band rejection (up to 40 dB), and compact dimensions, making them ideal for both portable and embedded systems.

As GNSS technologies become increasingly integrated into critical infrastructure, the demand for high-performance filtering solutions grows. High-Q ceramic filters from Knowles play a vital role in establishing precise signal control and jamming resistance.

For detailed specifications, refer to the GPS L1 filter datasheet. 

Related

Source: Knowles Precision Devices

Recent Posts

Kyocera Launches New SAW Filter for GNSS 1.6GHz Satellite Communications

30.9.2025
1

Flaked Tantalum Powders: High Capacitance Powders for High Reliable Tantalum Capacitors

29.9.2025
5

Space Evaluation Testing on SAW Filter Based on Piezo-On-Insulator Technology

29.9.2025
15

Pure-Polyimide Flexible Heater for High-Reliability Applications

26.9.2025
10

Passive Components J-STD-075 Process Sensitivity Level Classification And Labeling

25.9.2025
22

Quality Challenges and Risk Mitigation for Passive Components in Harsh Environments

24.9.2025
31

Silicon Capacitors Reliable Performance in Harsh Conditions

24.9.2025
47

Tantalum Capacitor Technology Advantages for Harsh Environment

24.9.2025
48

Thermoset Polymer Dielectric Capacitors for Harsh Environment Applications 

24.9.2025
39

EMI Noise Mitigation in Automotive 48V Power Supply Systems

24.9.2025
26

Upcoming Events

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 8
11:00 - 12:00 CEST

PCB Online Shop – simply “Made in Germany” by Würth Elektronik

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version