Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Littelfuse Unveils Ultra-Low-Power TMR Magnetic Switches

    DC/DC Push‑Pull Converter vs PSFB Design Guide

    Wk 2 Electronics Supply Chain Digest

    Rubycon PMLCAP DC‑Link Film Capacitors in Mass Production

    Bourns SSD‑1000A AEC‑Q Digital Current Sensors

    YAGEO High‑Capacitance X7R Automotive MLCC Extensions

    How Metal Prices Are Driving Passive Component Price Hikes

    Modelithics COMPLETE Library v25.8 for Keysight ADS

    Taiyo Yuden Releases 165C Automotive Multilayer Metal Power Inductor in 1608 Size

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Littelfuse Unveils Ultra-Low-Power TMR Magnetic Switches

    DC/DC Push‑Pull Converter vs PSFB Design Guide

    Wk 2 Electronics Supply Chain Digest

    Rubycon PMLCAP DC‑Link Film Capacitors in Mass Production

    Bourns SSD‑1000A AEC‑Q Digital Current Sensors

    YAGEO High‑Capacitance X7R Automotive MLCC Extensions

    How Metal Prices Are Driving Passive Component Price Hikes

    Modelithics COMPLETE Library v25.8 for Keysight ADS

    Taiyo Yuden Releases 165C Automotive Multilayer Metal Power Inductor in 1608 Size

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Samsung Electro-Mechanics Introduces Industry’s First Thin-Film Coupled Power Inductor into Mass Production

14.9.2023
Reading Time: 3 mins read
A A

Samsung Electro-Mechanics announced on September 10 that it will mass-produce coupled power inductors, which feature two power inductors on a single chip, and will target the market by expanding its high-end product lineup.

Power inductors, referred to as the “second MLCC,” are core electronic components that are applied to power circuits to convert electricity (power) from batteries into power required by semiconductors and stably supply current.

RelatedPosts

Littelfuse Unveils Ultra-Low-Power TMR Magnetic Switches

DC/DC Push‑Pull Converter vs PSFB Design Guide

Wk 2 Electronics Supply Chain Digest

Samsung Electro-Mechanics has developed two types of coupled power inductors with low losses and DCR resistance value (a characteristic that hinders the flow of current): the 2016 size (2.0 mm wide and 1.6 mm long) and the 2218 size (2.2 mm wide and 1.8 mm long).

These products are mounted near the CPU (central processing unit), which serves as the brain of a PC, to provide stable current to the CPU. In particular, the higher the performance of the CPU, the more current it uses, so a power inductor with low power loss is required.

Power inductors consume power based on the resistance value of the coils wound inside. The greater the resistance, the greater the power consumed.

Previously, two power inductors were connected in parallel to reduce the resistance value, but this has the disadvantage of increasing the number of components and limiting the freedom of circuit design.

Samsung Electro-Mechanics has applied a coupled structure with two coils stacked on top of each other to realize a single chip. Coupled power inductors are one of the most difficult technologies to implement among power inductor products due to issues such as insulation between coils and magnetic field interference.

Samsung Electro-Mechanics’ coupled power inductor is a thin-film type product formed by electroplating thin coil shapes on a package substrate and is characterized by superior electrical properties such as insulation (less electromagnetic interference) and resistance value than competing products that are made by directly winding coils on magnetic materials (objects with magnetic properties).

Samsung Electro-Mechanics independently developed a magnetic material with excellent properties and low loss based on the material technology accumulated through MLCC and applied the photosensitization method (a manufacturing method that uses light to engrave circuits) used in semiconductor package substrate manufacturing to precisely create the spacing between the two coils to minimize changes in product properties due to the environment.

The power inductor market size is expected to reach approximately USD 3.65 billion (KRW 4.85 trillion) by 2028, at a CAGR of approximately 9%. The power inductor market is expected to grow steadily centered on high-performance products due to the increasing demand for high-performance and multifunctionalization of electronic devices and the expansion of the automotive industry such as autonomous driving and electric vehicles.

“Power inductors are becoming a key component in differentiating the performance of semiconductors as the demand for higher specifications and higher performance of semiconductors continues,” said Chang Duckhyun, CEO of Samsung Electro-Mechanics. “Samsung Electro-Mechanics will develop differentiated products based on the world’s best materials and process technologies to become a top-tier tech company leading the power inductor market.”

In December of last year, Samsung Electro-Mechanics implemented an organizational change that elevated the ‘Electronic Component Team’ in charge of power inductors, which is being developed as the second MLCC, to the ‘Electronic Component Business Team,’ and is embarking on a full-scale business expansion.

Related

Source: Samsung Electr-Mechanics

Recent Posts

Littelfuse Unveils Ultra-Low-Power TMR Magnetic Switches

13.1.2026
2

DC/DC Push‑Pull Converter vs PSFB Design Guide

12.1.2026
19

Rubycon PMLCAP DC‑Link Film Capacitors in Mass Production

9.1.2026
32

Bourns SSD‑1000A AEC‑Q Digital Current Sensors

8.1.2026
42

YAGEO High‑Capacitance X7R Automotive MLCC Extensions

8.1.2026
46

How Metal Prices Are Driving Passive Component Price Hikes

8.1.2026
221

Modelithics COMPLETE Library v25.8 for Keysight ADS

7.1.2026
29

Taiyo Yuden Releases 165C Automotive Multilayer Metal Power Inductor in 1608 Size

7.1.2026
34

Jianghai Vibration‑Resistant Aluminum Capacitors Guidelines for Industrial Electronics

6.1.2026
29

Upcoming Events

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version