Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Extends SMT Gate Drive Transformers to 1000 V

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

    Connector Industry Achieves Double-Digit Growth

    Stackpole Unveils Metal Element High Current Chip Jumpers

    Common Mistakes in Flyback Transformer Specs

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Extends SMT Gate Drive Transformers to 1000 V

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

    Connector Industry Achieves Double-Digit Growth

    Stackpole Unveils Metal Element High Current Chip Jumpers

    Common Mistakes in Flyback Transformer Specs

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

TAIYO YUDEN Introduces the World’s First 1,000 μF Multilayer Ceramic Capacitor

11.5.2018
Reading Time: 2 mins read
A A

Source: Taiyo Yuden news

TOKYO, May 8, 2018—TAIYO YUDEN CO., LTD. has announced today the mass-production of the “PMK432 BJ108MU-TE” (4.5 x 3.2 x 3.2 mm) product, which realizes a capacitance of 1,000 μF for the first time in the world. Applications of this product include smoothing power supplies used in ICT-related devices and backing up energy harvesting devices.

RelatedPosts

TDK Extends SMT Gate Drive Transformers to 1000 V

Non-Linear MLCC Class II Capacitor Measurements Challenges

Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

TAIYO YUDEN, which has been continuously leading technology evolution as the first runner in the capacitance enhancement of multilayer ceramic capacitors, introduced the world’s first
4532-size capacitor with a capacitance of 470 μF in 2015. By further improving materials, thin film technology and multilayer capabilities we have nurtured through enhancing capacitance, we have successfully commercialized the world’s first multilayer ceramic capacitor with a capacitance of 1,000μF, which represents a milestone for our development team.

Production of this multilayer ceramic capacitor will commence at the company’s Tamamura Plant (Tamamura-machi, Sawa-gun, Gunma Prefecture, Japan) from May 2018 at a production rate of 0.1million units per month.

Technology Background
With current developments in IoT and capitalization of big data, demand for ICT infrastructure, such as base station communication equipment and servers, has been increasing remarkably. To improve the efficiency of power supplies, such devices are now being provided with switching-type power supply circuits. These power supply circuits use a large number of electrolytic capacitors and multilayer ceramic capacitors in combination as high-value capacitors to smooth output and ensure stable operation of the device.

Generally, multilayer ceramic capacitors have a low ESR and superior frequency characteristics as compared to electrolytic capacitors and are effective as smoothing capacitors for controlling the ripple current in increasingly high-frequency power circuits. Furthermore, the 1,000 μF multilayer ceramic capacitor, with a one-digit higher capacitance than the conventional product range, facilitates the replacement of electrolytic capacitors that are concurrently used with multilayer ceramic capacitors, realizing MLCC only design. And, being smaller in size than electrolytic capacitors, the multilayer ceramic capacitor contributes to a reduction in the mounting area.

TAIYO YUDEN has sophisticated every aspect of elemental technologies such that we are now able to announce a capacitance of 1,000 μF in our product line-up—a first-in-the-world achievement for multilayer ceramic capacitors.

The fundamental electrical characteristics of the 1,000 μF multilayer ceramic capacitor “PMK432 BJ108MU-TE” have been provided through the Easy Power Delivery Network (PDN) Tool that is available on the TAIYO YUDEN website.

In response to market demand, TAIYO YUDEN will continue to make additions to its line-up, typified by expanding rated voltages of high-value multilayer ceramic capacitors.

Application

  • Smoothing power supplies used in ICT-related devices and backing up energy harvesting devices.

The characteristics of the 1,000 μF Multilayer Ceramic Capacitor is as shown below.

 

Related

Recent Posts

Non-Linear MLCC Class II Capacitor Measurements Challenges

19.8.2025
15

Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

19.8.2025
8

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
116

Radiation Tolerance of Tantalum and Ceramic Capacitors

8.8.2025
72

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

7.8.2025
33

Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

6.8.2025
56

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

6.8.2025
43

How to Calculate the Output Capacitor for a Switching Power Supply

6.8.2025
50

Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

4.8.2025
35

Researchers Presents High-Performance Carbon-Based Supercapacitors

1.8.2025
31

Upcoming Events

Aug 27
17:00 - 18:00 CEST

Capacitor Assemblies for High-Power Circuit Designs

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version