Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Top 10 Connector Vendors by Product Type

    Bourns Releases Highโ€‘Q Air Coil Inductors for RF Aplications

    CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

    ESA Call for Papers 6th Space Passive Component Days โ€“ SPCD 2026

    Wรผrth Elektronik Offers Halogenโ€‘Free EMC Gaskets for Displays and Housings

    Component Distribution Supply Chain January 2026

    Binder Unveils M8 Flange Solder Connectors for Flexible Cabling

    Power Electronics Tools for Passives and Magnetic Designs

    Modelithics Releases Component Model Library for SIMULIA CST Studio Suite

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Oneโ€‘Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Top 10 Connector Vendors by Product Type

    Bourns Releases Highโ€‘Q Air Coil Inductors for RF Aplications

    CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

    ESA Call for Papers 6th Space Passive Component Days โ€“ SPCD 2026

    Wรผrth Elektronik Offers Halogenโ€‘Free EMC Gaskets for Displays and Housings

    Component Distribution Supply Chain January 2026

    Binder Unveils M8 Flange Solder Connectors for Flexible Cabling

    Power Electronics Tools for Passives and Magnetic Designs

    Modelithics Releases Component Model Library for SIMULIA CST Studio Suite

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Oneโ€‘Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Thermistors Basics, NTC and PTC Thermistors

29.1.2026
Reading Time: 35 mins read
A A

This article explains operation principles, features and packaging options of thermistors.

Key Takeaways

  • Thermistors are temperature-sensitive resistors that change resistance significantly with temperature, enabling temperature measurement and protection functions.
  • They exist mainly as NTC (Negative Temperature Coefficient) and PTC (Positive Temperature Coefficient) thermistors, each serving different applications.
  • NTC thermistors use materials like doped metal oxide ceramics and exhibit an exponential resistance change with temperature; meanwhile, PTC thermistors act as resettable fuses under over-current conditions.
  • The choice of thermistor packaging and geometry strongly impacts performance, with options ranging from beads to discs and SMD chips for various applications.
  • Designers must consider key parameters such as tolerances, thermal response, and electrical behavior when selecting thermistors for electronic systems.

Introduction to thermistors

Thermistors are temperatureโ€‘sensitive resistors whose resistance changes strongly with temperature and that are made from semiconducting ceramic or polymer materials. They are widely used for temperature measurement and compensation (mainly NTC) and for overโ€‘current and overโ€‘temperature protection (mainly PTC). Compared to RTDs and semiconductor temperature sensors, thermistors offer very high sensitivity, small size, and low cost, at the expense of nonโ€‘linearity and more limited absolute accuracy.

Thermistors can be broadly divided into:

  • NTC thermistors (Negative Temperature Coefficient): resistance decreases exponentially with temperature; used mainly as temperature sensors and inrush current limiters.
  • PTC thermistors (Positive Temperature Coefficient): resistance increases sharply above a transition temperature or fault current; used mainly as resettable protection devices and selfโ€‘regulating heaters.

Overview and classification

The table below puts thermistors into context with other temperatureโ€‘sensitive devices.

Table 1 โ€“ Common temperatureโ€‘sensing and protection devices

TechnologyTypical roleLinearityAccuracy (typical)Temperature rangeCost
NTCSensing, compensation, inrushPoorMediumโˆ’40 to 150/200 ยฐCLow
PTCProtection, selfโ€‘regulatingPoorThresholdโ€‘orientedโˆ’40 to 125/150 ยฐCLow
RTDPrecision temperature sensingGoodHighโˆ’200 to 600 ยฐCHigh
IC sensorEasy interface, monitoringGoodMediumโ€“highโˆ’40 to 125/150 ยฐCMedium
FuseOneโ€‘shot overโ€‘current protectionN/AN/ACurrent protection onlyLow
PPTCResettable overโ€‘current protectionN/AThresholdโ€‘orientedCurrent protection onlyLow

Construction and designs

Thermistor materials are based on doped metal oxide ceramics or conductive polymer composites. These materials are pressed, sintered or extruded into the desired shape and then encapsulated. Terminals are either inserted into the body or soldered to metallized surfaces, and the body is often coated with lacquer, epoxy, glaze or glass to improve robustness and moisture resistance.

Common geometries include rods, discs and beads, often encapsulated, as well as SMD chip thermistors. Lowโ€‘ohmic SMD NTCs may use multiple internal electrodes to create several resistor elements in parallel inside one body, reducing resistance without increasing footprint. PTC thermistors exist as multilayer chips, MELF cylinders, radial or axial leaded parts, probe assemblies, and special rods or discs for heating functions.

Figure 1. Thermistor design examples.
Figure 2. Construction of a low ohmic chip thermistor.

Table 2 โ€“ Typical thermistor geometries

Geometry / packageTypical typeTypical useNotes
BeadNTCFast sensors, probesVery small, fragile
DiscNTC/PTCPower NTC, PTC heaters, inrushHigher energy capability
SMD chipNTC/PTCPCBโ€‘mounted sensors/protectorsAutomated assembly
MELFPTCAutomotive, industrial protectionRobust, cylindrical
Radial leadedNTC/PPTCInrush limiters, resettable fusesThroughโ€‘hole
Axial leaded/strapPPTC/NTCBattery packs, surface mountingDirect contact to surfaces
Probe assembliesNTC/PTCHVAC, appliances, industrialCustomized housing and leads

NTC thermistor basics

NTC thermistors are based on doped semiconducting oxides whose conductivity increases with temperature. Their resistance follows an exponential temperature dependence typically expressed by the Steinhartโ€“Hartโ€‘type relation:

R(T)=Aexpโก(BT)R(T) = A \exp \left(\dfrac{B}{T}\right)

where AAA sets the nominal resistance level and BB determines the temperature dependence.

For practical use, the relationship between a reference temperature T0T_0 (usually 20 or 25 ยฐC) and a general temperature TT is often written as:

lnโก(R(T)R(T0))โ‰ˆB(1Tโˆ’1T0)\ln \left(\dfrac{R(T)}{R(T_0)}\right) \approx B \left(\dfrac{1}{T} – \dfrac{1}{T_0}\right)

The constant BB (Bโ€‘value) is determined from measurements at two temperatures, often 25 ยฐC and 50 ยฐC, and typically lies between 2500 K and 5000 K depending on material and application.

NTC tolerances and R/T curves

Manufacturing involves strong shrinkage of the sintered material, which makes it challenging to control both the nominal resistance R25R_{25} and the Bโ€‘value tightly. Standard tolerances for B may be around 5%, while nominal resistance at 25 ยฐC is often specified with 5, 10 or 20% tolerance. Through precision machining of alreadyโ€‘sintered chips, much tighter tolerances down to 0.2โ€“1% on R25R_{25} and about 1% on B are achievable.

The combination of R25R_{25} and B tolerances defines a tolerance band for the resistanceโ€“temperature (R/T) curve, often illustrated as a family of curves around the nominal characteristic. For higherโ€‘accuracy sensing, sensors may be specified by tracking one or more points on the R/T curve, and tolerances can then be expressed either as resistance deviation โˆ†R or as equivalent temperature deviation โˆ†T at those points.

Figure 3. Thermistor tolerances at the reference temperature T25.
Figure 4. Thermistor B tolerance effect.
Figure 5. The combined effect of the R25 and B thermistor tolerances.

NTC slope and temperature coefficient

The slope of the R/T curve is directly related to the Bโ€‘value and can be expressed by the temperature coefficient ฮฑ\alpha, defined as:

ฮฑ=1RdRdT\alpha = \dfrac{1}{R} \dfrac{dR}{dT}

For NTC thermistors, ฮฑ\alpha is negative and varies with temperature; around 25 ยฐC, typical values are between โˆ’3%/ยฐC and โˆ’5.5%/ยฐC. Designers sometimes also use resistance ratios, such as R25/R50R_{25}/R_{50} or R25/R125R_{25}/R_{125}, which characterize the curve shape and can be specified with tolerances.

Table 3 โ€“ Typical NTC parameter ranges (illustrative)

ParameterTypical value / range
Nominal resistance R25R_{25}R251 kฮฉ to 1 Mฮฉ
Bโ€‘value2500 K to 5000 K
Tolerance on R25R_{25}R25ยฑ0.2% to ยฑ20%
Tolerance on Bยฑ1% to ยฑ5%
Temperature coefficientโˆ’3 to โˆ’5.5%/ยฐC at 25 ยฐC
Figure 6. Example of alternative thermistor tolerance specification by means of a so called butterfly curve.

NTC selfโ€‘heating and Vโ€“I behavior

When a voltage is applied across an NTC thermistor, current initially follows Ohmโ€™s law. As power dissipation P=I2RP = I^2R heats the body, the resistance drops, increasing current further and causing a characteristic bending of the Vโ€“I curve. At higher voltages, the resistance decreases faster than the current rises, and the Vโ€“I graph may show a region where incremental resistance is negative.

This selfโ€‘heating behavior can be either an error source in temperature sensing (if measurement current is too high) or an intentional operating mode in applications such as inrush current limiting and selfโ€‘heated flow sensors.

Figure 7. The self-heating effect on the V/I curve of an NTC thermistor
Figure 8. NTC thermistor example of the V/I diagram in log-log scale together with power and resistance grading.

Thermal time constant and dissipation factor

The temperature response of a thermistor is characterized by:

  • Thermal time constant ttt: time required for the thermistor to reach 63.2% of the total temperature change when subjected to a step change in ambient temperature under zero power.
  • Heat capacity HH (J/ยฐC): energy needed to raise the thermistor body by 1 ยฐC.
  • Dissipation factor DD (mW/ยฐC): power that raises the thermistorโ€™s mean temperature by 1 ยฐC when freely mounted in still air.

These parameters are related by:

t=HDt = \dfrac{H}{D}

Smaller chips and bead thermistors have low heat capacity and short time constants, especially when immersed in liquids, while larger discs or encapsulated probes have higher heat capacity and slower response.

Figure 9. Time constant t of an NTC thermistor

Table 4 โ€“ Typical NTC thermal parameters (illustrative)

Package typeTime constant (air)Time constant (liquid)Dissipation factor (air)
Bead0.3โ€“2 s0.05โ€“0.3 s0.5โ€“2 mW/ยฐC
SMD 06032โ€“5 s0.2โ€“1 s1โ€“3 mW/ยฐC
Disc, coated5โ€“20 s1โ€“5 s2โ€“10 mW/ยฐC
Probe5โ€“60 s1โ€“20 sApplicationโ€‘dependent

NTC application modes and type selection

NTC thermistors are used in three broad modes:

Fig. 10. Correction circuits for the R/T characteristic of NTC thermistors.
  1. Temperature sensing: resistance as a function of environmental temperature under low measurement current.
  2. Selfโ€‘heated operation: resistance as a function of selfโ€‘heating, for example in inrush current limiters and flow sensors.
  3. Timeโ€‘dependent behavior: resistance as a function of time, exploiting thermal inertia in delay circuits.

When selecting an NTC, designers consider:

  • Encapsulation and environment: glass, glaze, epoxy/lacquer, or uncoated.
  • Temperature range and thermal shock/humidity requirements.
  • Geometry: SMD chip, rod, disc, bead, or custom probe.
  • Mounting method: soldering, welding, bonding, or mechanical clamping.
  • Reference resistance R25R_{25}R25 and desired sensitivity (Bโ€‘value or temperature coefficient).
  • Tolerance requirements at one or multiple temperatures (point matching vs curve tracking).
  • Power dissipation limits and acceptable selfโ€‘heating.
  • Thermal time constant suitable for the application dynamics.

NTC linearization and interface circuits

Because the R/T curve is highly nonโ€‘linear, simple linearization techniques with fixed resistors are often employed. Common approaches include series and parallel resistors or voltageโ€‘divider configurations that flatten the response in the temperature band of interest. For example, placing a resistor in parallel with the NTC can be dimensioned so that the combined resistance intersects a straight line at three temperatures, resulting in a nearโ€‘linear response over a limited range.

Typical interface circuits include:

  • Voltage divider with NTC and fixed resistor feeding an ADC input, with the ratio chosen to maximize resolution near the critical temperature range.
  • Bridge circuits for higherโ€‘precision measurement and drift compensation.
  • Simple threshold circuits using comparators if only an over/underโ€‘temperature indication is needed.

Measurement current must be chosen low enough to keep selfโ€‘heating errors within the permissible accuracy budget.

thermistor linearizing correction resistor equation [6]
Figure 11. Linearizing the R/T curve of an NTC thermistor.

Table 5 โ€“ Simple NTC voltage divider design steps

StepAction
1Choose RNTCR_{NTC} nominal at midโ€‘range temperature
2Select fixed resistor โ‰ˆ RNTCR_{NTC} at midโ€‘range
3Calculate divider voltage at min, mid, max T
4Check ADC range and resolution
5Adjust resistor value or supply/reference as needed

NTC failure modes and reliability

NTC thermistors are small and highโ€‘resistance components whose performance is sensitive to material and mechanical imperfections. Vulnerable areas include the leadโ€“body interface, especially in unencapsulated or thinly coated discs and beads. Mechanical stress from improper lead forming can create microโ€‘cracks that both change resistance and allow moisture ingress, leading to drift or intermittent failures.

The sintered material can undergo crystalline settling, manifesting as sudden resistance jumps of a few percent triggered by thermal or mechanical shocks; burnโ€‘in heat treatment is used to stabilize these effects. Hermetically sealed glassโ€‘encapsulated beads and SMD thermistors have significantly improved mechanical robustness and moisture resistance, and their reliability is comparable to that of ceramic chip capacitors and thickโ€‘film resistors when sourced from qualified manufacturers. NTC thermistors are not suitable for parallel connection to increase power rating because the element with slightly lower resistance will selfโ€‘heat more, further lowering its resistance and leading to thermal runaway and failure.

Table 6 โ€“ Typical NTC failure mechanisms

MechanismCauseSymptom
Microโ€‘cracksLead forming, mechanical shockDrift, intermittent opens
Moisture ingressDamaged coatingGradual resistance drift
Crystalline settlingThermal or mechanical shockSudden step in resistance
Overload/overheatOperation beyond ratingsPermanent resistance change
Parallel operationUnequal selfโ€‘heatingThermal runaway, burnout

NTCs in special environments

Tests with neutron, beta and gamma radiation have shown that thermistors can withstand high levels of nuclear radiation with negligible changes in electrical characteristics. This makes them suitable for use in harsh environments such as nuclear instrumentation and space applications, provided other components and insulation systems are also rated appropriately.

PTC thermistors: roles and principles

PTC thermistors with positive temperature coefficient behavior are mainly used for overโ€‘current and overโ€‘temperature protection, as well as in selfโ€‘regulating heater and degaussing circuits. Two major technologies exist:

  • Ceramic PTC thermistors based on doped barium titanate with a ferroelectric transition (Curie point).
  • Polymer PTC (PPTC) thermistors based on conductive particles dispersed in a polymer matrix.

In both technologies, resistance remains relatively low in the normal operating range, then increases sharply by several orders of magnitude when a threshold temperature is exceeded, creating a switchโ€‘like behavior.

Ceramic PTC thermistor technology

Ceramic PTC thermistors use doped barium titanate ceramics with additives such as magnesium or strontium to tailor resistivity and transition temperature. Below the Curie point, the material exhibits low resistance with a small negative temperature coefficient, but as temperature approaches the Curie point, changes in dielectric constant increase barriers between grains and restrict electron flow, causing a steep rise in resistivity. Above the transition, resistance can increase exponentially by several decades with temperature.

Ceramic PTCs are considered robust and reliable and have been widely used for degaussing circuits in CRT televisions and monitors, inrush current limiting, motor start assistance, and as temperature sensors in probe assemblies for HVAC and household appliances.

Polymer PTC (PPTC) technology

Polymer PTC devices are made from a polymer matrix loaded with conductive particles such as carbon black. At normal temperatures, the polymer is in a relatively compact phase where conductive particles are in close contact, providing a lowโ€‘resistance path. When temperature rises above the materialโ€™s transition point due to ambient heating or IยฒR selfโ€‘heating under fault current, the polymer expands, breaking many conduction paths and causing a sharp increase in resistance.

PPTCs typically have lower base resistivity than ceramic PTCs, which allows them to carry higher normal currents for a given size. Their lower production cost and resettable fuse behavior have driven widespread adoption in electronics for overโ€‘current protection.

Ceramic vs polymer PTC: technology differences

Ceramic PTC thermistors support both protection functions and applicationโ€‘specific roles such as degaussing, selfโ€‘regulating heating, and motor or ballast inrush limiting. Polymer PTCs are primarily used for overโ€‘current and overโ€‘temperature protection where a resettable fuse is desired.

Ceramic PTCs can be fabricated as multilayer chips, enabling very small case sizes down to 0201 and even 01005, similar to MLCCs and thickโ€‘film resistors. Polymer PTCs are produced from extruded polymer sheets, so their performance is more closely tied to surface area, historically leading to larger physical sizes for similar hold currents, though newer PPTC chips continue to shrink and are now available down to small SMD case sizes.

Production cost is generally lower for PPTCs due to simpler material systems and processes, giving them an advantage where price is critical and extreme robustness or special functions are not required.

Table 7 โ€“ Ceramic PTC vs PPTC overview

FeatureCeramic PTCPolymer PTC (PPTC)
Base materialDoped BaTiOโ‚ƒ ceramicPolymer + conductive filler
Main functionProtection, heatingResettable overโ€‘current
Size potentialDown to 01005 chipLimited by sheet geometry
Cost levelMediumLow
Energy handlingHigh (discs, rods)Moderate
Typical marketsAppliances, industrial, automotiveConsumer, ICT, lowโ€‘voltage

PTC manufacturing processes

Ceramic PTC process:

  • Doped barium titanate is prepared as a powder, milled and mixed into a slurry.
  • For leaded parts, discs are pressed, lead wires attached, silver electrodes applied, and the assembly is fired in a kiln.
  • A protective epoxy or glass coating is applied for environmental protection.
  • For chip devices, stacked green ceramic sheets with printed internal electrodes are laminated, fired, and diced into multilayer chips with terminations applied.

Polymer PTC process:

  • A polymer is loaded with carbon black and mixed to the appropriate viscosity.
  • The mixture is extruded into thin sheets and crossโ€‘linked (for example by irradiation) to stabilize the structure.
  • Sheets are cut into the desired shapes, electrodes or terminations are attached, and radial parts are typically epoxyโ€‘coated.

PTC package configurations

Ceramic PTC configurations include:

  • Multilayer chip thermistors for PCB mounting.
  • MELF cylindrical surfaceโ€‘mount designs favored in automotive applications.
  • Radial and axial leaded parts for overโ€‘current and temperature protection.
  • Bare rods and discs used as heating elements or in customized housings.
  • Probe assemblies that integrate a PTC into a metal tube or custom sensor.

Polymer PTC configurations include:

  • Square and round radialโ€‘leaded devices for telecom line protection and industrial electronics.
  • Surfaceโ€‘mount PPTC chips for portable and computer applications where board space is limited.
  • Axial strap types for direct mounting on battery cells, especially in rechargeable pack protection.

PTC electrical behavior and datasheet parameters

Key PTC/PPTC electrical parameters include:

  • Hold current (IHOLD): maximum continuous current at a specified ambient temperature for which the device remains in its lowโ€‘resistance state.
  • Trip current (ITRIP): current at which the device will switch to its highโ€‘resistance state within a specified time.
  • Maximum operating voltage and fault current: limits beyond which damage or unsafe operation may occur.
  • Initial resistance and resistance in the tripped state: important for insertion loss and fault behavior.
  • Timeโ€‘toโ€‘trip vs current and ambient temperature derating: curves showing how trip performance varies over temperature.

These parameters, combined with R(T) curves for ceramic PTCs with a pronounced Curie point, allow engineers to select devices for overโ€‘current protection or temperatureโ€‘limiting roles.

Table 8 โ€“ Typical PPTC datasheet entries

ParameterDescription
IHOLDHold current at 25 ยฐC
ITRIPTrip current at 25 ยฐC
VmaxMaximum operating voltage
ImaxMaximum fault current
Rmin/RmaxInitial resistance range at 25 ยฐC
R1maxMaximum resistance one hour after trip
Pd typTypical power dissipation in hold state

PTC selection and application examples

Typical application patterns include:

  • PPTC in series with a lowโ€‘voltage supply rail (for example USB or logic rails) to protect against short circuits and overloads.
  • PTC thermistor in series with motor windings or transformers to limit current during startโ€‘up and to provide protection during stall or overโ€‘temperature conditions.
  • Ceramic PTC elements in degaussing circuits of CRT displays and in selfโ€‘regulating heater elements where the highโ€‘temperature resistance limits maximum temperature without external control.

Selection involves choosing IHOLD above the maximum normal operating current but below fault levels, ensuring ITRIP and timeโ€‘toโ€‘trip meet system protection requirements, and verifying voltage and energy ratings are adequate for worstโ€‘case conditions.

Table 9 โ€“ Example PTC application guidelines

ApplicationKey selection focus
USB rail protectionIHOLD > max load, ITRIP < fault level
Battery packStrap type, good thermal coupling
Motor windingCeramic PTC with suitable Curie T
Degaussing/heatingDisc/rod with required power and T

PTC reset behavior, aging and limitations

After a trip event, PTC and PPTC devices cool and return to their lowโ€‘resistance state, but the recovery time depends on ambient conditions and thermal mass. Frequent or prolonged trips can lead to gradual increases in base resistance and changes in trip characteristics, especially in polymer devices due to structural changes over life. Designers must account for ambient temperature influence on IHOLD and ITRIP to avoid nuisance tripping, particularly in highโ€‘temperature environments.

Ceramic PTCs used as heaters or in repeated degaussing cycles are generally robust but may experience changes in resistance after very long life or severe thermal cycling. PPTCs are attractive because they are resettable, but they do not replace fuses in all applications, particularly where precise, predictable trip behavior over life is required.

Packaging, mounting and thermal interface

Across both NTC and PTC types, package choice strongly impacts performance. Beads and small chips offer fast response but are mechanically fragile. Discs and rods handle higher energy. Coated or glassโ€‘sealed parts improve moisture resistance. Probes provide robust mechanical mounting and controlled thermal coupling to pipes, surfaces or air streams.

Good thermal interface design is critical. Sensors used for temperature measurement should have low thermal resistance to the measured medium but appropriate electrical insulation. Protection devices must be mounted so that they sense the relevant temperature or currentโ€‘induced heating and can safely dissipate fault energy.

Comparison with other technologies

Thermistors compete and complement other technologies:

  • RTDs: higher absolute accuracy and linearity over a wide range but larger and more expensive.
  • Semiconductor temperature sensors: convenient linear voltage or digital output, but limited highโ€‘temperature range and typically slower thermal response.
  • Fuses and circuit breakers: precise, often singleโ€‘shot overโ€‘current protection, whereas PPTCs provide resettable but less sharply defined trip behavior.

Thermistors are preferred where high sensitivity, small size, low cost, and resettable behavior (for PTC/PPTC) are more important than absolute accuracy or perfectly defined trip points.

Reliability and standards

Modern thermistors, especially SMD NTCs and multilayer ceramic PTCs from qualified manufacturers, demonstrate reliability comparable to other passive components when used within ratings and with appropriate environmental protection. Burnโ€‘in, statistical process control, and moistureโ€‘resistant encapsulations have greatly improved stability. Designers should verify applicable standards or qualification requirements (for example automotive, appliance safety, or telecom) and check that chosen components and probe assemblies are approved accordingly.

Table 1. NTC THERMISTORS CHARACTERISTICS

Summary

This article provides a complete introduction to thermistors, explaining how their resistance varies strongly with temperature and why this makes them useful for sensing, compensation and protection functions in electronic systems. It distinguishes NTC thermistors, used mainly for temperature measurement and inrushโ€‘current limiting, from PTC and polymer PTC devices, which are primarily used as resettable overโ€‘current and overโ€‘temperature protectors or selfโ€‘regulating heaters.

The text describes thermistor materials, construction and packaging, including beads, discs, SMD chips, MELF parts, radial/axial leaded devices and probe assemblies, and links these geometries to typical applications and energyโ€‘handling capabilities. For NTCs, it covers the exponential Rโ€“T characteristic, Bโ€‘value, tolerances, temperature coefficient, selfโ€‘heating effects, thermal time constant and dissipation factor, as well as linearization techniques, application modes and typical failure mechanisms. For PTCs, it explains ceramic and polymer technologies, manufacturing processes, electrical parameters such as IHOLD and ITRIP, and how these components are applied in power rails, motors, degaussing circuits and battery packs.

Conclusion

NTC and PTC thermistors together form a versatile family of temperatureโ€‘dependent resistors that can address both precise sensing tasks and robust protection functions when their characteristics are properly understood and applied. By linking material physics, geometry, thermal behavior and key datasheet parameters to concrete circuit roles, the article gives designers practical guidance for selecting suitable thermistor types, packages and interface circuits across consumer, industrial, automotive and specialty applications.

FAQ about Thermistors, NTC and PTC

What is a thermistor and how does it work?

A thermistor is a temperatureโ€‘sensitive resistor whose resistance changes significantly with temperature, enabling accurate temperature sensing, compensation and protection in electronic circuits. It is typically made from semiconducting ceramic or polymer materials that exhibit a strong, nonโ€‘linear resistanceโ€“temperature characteristic.

What is the difference between NTC and PTC thermistors?

NTC thermistors have a negative temperature coefficient, so their resistance decreases exponentially as temperature rises, which makes them ideal for temperature measurement and compensation. PTC thermistors have a positive temperature coefficient and show a sharp increase in resistance above a threshold temperature or fault current, so they are mainly used for resettable overโ€‘current and overโ€‘temperature protection.

Where are NTC and PTC thermistors used?

NTC thermistors are widely used in HVAC, appliances, industrial and automotive systems for temperature sensing, compensation and inrushโ€‘current limiting. PTC and PPTC devices are used in power supplies, motors, telecom lines, battery packs and degaussing or selfโ€‘regulating heater circuits for protection and current limiting.

How do I select the right thermistor for my design?

Selection focuses on the application (sensing vs protection), geometry and package, operating temperature range, and key electrical parameters such as R25, Bโ€‘value, tolerances and thermal time constant for NTCs, or IHOLD, ITRIP, voltage rating and timeโ€‘toโ€‘trip for PTCs. Designers also consider mounting method, environmental robustness and required response time to match system requirements.

What are the main advantages of thermistors compared to other temperature sensors?

Compared to RTDs and IC sensors, thermistors offer very high sensitivity, small size and low cost, which is attractive in compact and costโ€‘sensitive designs. The tradeโ€‘offs are nonโ€‘linear characteristics, limited absolute accuracy without calibration and narrower usable temperature ranges than precision RTDs.

Are thermistors reliable in harsh environments?

Modern SMD NTCs and multilayer ceramic PTCs from qualified manufacturers show reliability comparable to other passive components when used within their ratings and with suitable encapsulation. They can even operate reliably under conditions such as high humidity, thermal cycling and, for special types, elevated radiation levels, provided the overall design and insulation system are properly engineered.

How to choose and apply NTC and PTC thermistors in your design

  1. Step 1 โ€“ Define the thermistor function

    Choose between sensing and protection
    Decide whether the component will primarily measure temperature (for example for monitoring or compensation) or protect against overโ€‘current and overโ€‘temperature events. Use NTC thermistors for measurement and temperatureโ€‘dependent control, and use PTC or PPTC devices where resettable current limiting or temperature limiting is required.

  2. Step 2 โ€“ Select NTC or PTC type and geometry

    Match technology and package to the application
    For NTC sensing, choose between beads, SMD chips, discs or probes depending on required response time, mechanical robustness and mounting method. For PTC/PPTC protection, select chip, radial, MELF or strap types that can handle the expected current, energy and mechanical constraints in your layout.

  3. Step 3 โ€“ Check key datasheet parameters

    Understand electrical and thermal ratings
    For NTCs, review nominal resistance R25, Bโ€‘value, tolerances, operating temperature range, power rating, dissipation factor and thermal time constant so you can predict accuracy and response. For PTC/PPTC devices, check IHOLD, ITRIP, maximum operating voltage, maximum fault current, initial and tripped resistance, and derating curves versus ambient temperature.

  4. Step 4 โ€“ Design the interface circuit

    Implement simple sensing or protection circuits
    For NTC temperature measurement, implement a voltage divider or bridge circuit that feeds an ADC, choosing the series resistor to optimize resolution over the critical temperature range and limiting measurement current to avoid selfโ€‘heating. For PTC/PPTC protection, place the device in series with the protected line so that fault current selfโ€‘heats the element into its highโ€‘resistance state, and verify that normal operating current remains below IHOLD under all temperature conditions.

  5. RelatedPosts

    Thermistor Linearization Challenges

    Overvoltage Protection Selection Guidelines: TVS Diodes, MOVs, and ESD MOV Varistors

    ESD Electrostatic Discharge Protection by TVS Diode

  6. Step 5 โ€“ Consider mounting, environment and reliability

    Ensure good thermal coupling and longโ€‘term stability
    Mount thermistors to achieve good thermal contact with the medium being sensed or the component being protected while maintaining adequate electrical insulation and creepage distances. Choose encapsulation, coating and package style appropriate for humidity, vibration and thermal cycling, and avoid mechanical stress on leads or terminations to prevent drift and premature failures.

Related

Recent Posts

CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

28.1.2026
25

ESA Call for Papers 6th Space Passive Component Days โ€“ SPCD 2026

28.1.2026
22

Stackpole Releases AlN Highโ€‘Power Thick Film Chip Resistors

26.1.2026
23

ROHM Extends 2012 Shunt Resistors Power Rating up to 1.25 W

23.1.2026
26

Passive Components in Quantum Computing

22.1.2026
125

0603 Automotive Chip Varistors as TVS Diode Replacements, TDK Tech Note

21.1.2026
29

YAGEO Offers Automotive MOVs for EV and AI power

19.1.2026
37

YAGEO Acquires 100% of Shares of Shibaura Electronics

19.1.2026
106

Wรผrth Elektronik Introduces Product Navigator for Passive Components

14.1.2026
89

Upcoming Events

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour โ€“ from RED to CRA โ€“ Information and Discussion

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

ยฉ EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

ยฉ EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version