Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    YAGEO Unveils Compact 3.6kW LLC Transformer for OBC EV Charging

    Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

    KYOCERA Releases Shielded Board-to-Board Connectors for Reliable EMI Protection

    Wk 41 Electronics Supply Chain Digest

    Samtec Expands Connector Severe Environment Testing Offering

    Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

    YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

    Enhancing Energy Density in Nanocomposite Dielectric Capacitors

    Advances in the Environmental Performance of Polymer Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    YAGEO Unveils Compact 3.6kW LLC Transformer for OBC EV Charging

    Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

    KYOCERA Releases Shielded Board-to-Board Connectors for Reliable EMI Protection

    Wk 41 Electronics Supply Chain Digest

    Samtec Expands Connector Severe Environment Testing Offering

    Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

    YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

    Enhancing Energy Density in Nanocomposite Dielectric Capacitors

    Advances in the Environmental Performance of Polymer Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Voltage Dependence of Ferroelectric Class 2 Multilayer Ceramic Capacitors

10.10.2025
Reading Time: 4 mins read
A A

This paper describes the physical background of the voltage-dependent capacitance of class II Multilayer Ceramic Capacitors (MLCC) and present models for this dependency. 

The paper was presented by Frank Puhane, Würth Elektronik, Germany at the 4th PCNS 10-14th September 2023, Sønderborg, Denmark as paper No.2.3.

RelatedPosts

Advances in the Environmental Performance of Polymer Capacitors

Connector PCB Design Challenges

How to Manage Supercapacitors Leakage Current and Self Discharge 

Introduction

This article focuses on the voltage dependence of class 2 Multilayer Ceramic Capacitors (MLCCs), particularly their ferroelectric properties and how these influence capacitance under DC voltage. Two main processes are examined: an immediate response due to dipole reorientation and a long-term aging effect, likely related to domain wall movement. Understanding these behaviors is crucial for accurate electronic circuit design and simulation.

Key Points

  • Class 2 MLCCs display high capacitance and low loss due to their ferroelectric materials, like barium titanate.
  • Immediate capacitance changes occur due to the fast reorientation of dipoles under DC bias.
  • Long-term capacitance decreases are attributed to slow domain wall movement and aging effects.
  • Mathematical models, like the Miller polarization model and time-dependent aging model, enable accurate simulation of voltage-dependent behaviors.
  • Design-in requires accounting for both immediate and long-term capacitance reductions.

Extended Summary

Ferroelectric class 2 MLCCs, typically made with barium titanate, exhibit spontaneous polarization due to their non-centrosymmetric crystalline structure. Below the Curie temperature, their dipoles are organized into domains that collectively respond to applied electric fields. Above the Curie temperature, this alignment is lost, resulting in paraelectric behavior.

When a DC voltage is applied, an immediate polarization process occurs as domain dipoles align with the field. This reorientation restricts dipole motion, reducing the change in charge (dq) per voltage change (dV), and thus the capacitance, expressed as C=dqdV. Hysteresis arises due to remanent polarization and coercive fields (Ec), and capacitance peaks occur when the external field matches the coercive field during polarization reversal. A suitable model for this behavior is:
C(V)=(a–CS) sechc ( (V-V_C)b ) +CS where parameters a, b, c, CS, and VC can be derived from measurements.

Over longer periods under DC bias, domain wall motion causes further capacitance reduction. This aging effect, often within 10–20% over hundreds to thousands of hours, depends on applied voltage and temperature. Two primary explanations are proposed: reorientation of 90° domains and a reduction in polarizable domain wall regions. The long-term behavior is modeled as:
Cl(t)=(C0–C∞) exp–( tτ )α +C∞ with C0 as the initial capacitance, C∞ the saturation value, τ the characteristic time, and α a form factor.

Practical measurements demonstrate that initial capacitance drop is more significant than the long-term aging effect. At lower voltages, aging becomes relatively more prominent. Design engineers should consider both processes when selecting MLCCs, accounting for operational voltage, duration, and the expected decrease in usable capacitance.

Conclusion

Understanding the immediate and long-term voltage-dependent behaviors of class 2 MLCCs is essential for reliable circuit design. Immediate effects arise from dipole reorientation, while long-term changes are linked to domain wall motion and aging. Mathematical models based on measurable physical parameters enable accurate simulations and informed component selection. To ensure performance, designers should anticipate capacitance reduction and appropriately oversize MLCCs based on operating conditions and aging characteristics.

2_3 Polarization DC Bias MLCC_PCNS_V13_GrayDownload

Related

Source: PCNS

Recent Posts

Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

10.10.2025
24

Enhancing Energy Density in Nanocomposite Dielectric Capacitors

9.10.2025
24

Advances in the Environmental Performance of Polymer Capacitors

8.10.2025
49

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

8.10.2025
22

Paumanok Releases Capacitor Foils Market Report 2025-2030

7.10.2025
22

Modelithics Welcomes CapV as a Sponsoring MVP

7.10.2025
4

Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

3.10.2025
25

Electrolyte Selection and Performance in Supercapacitors

3.10.2025
34

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
25

How to Manage Supercapacitors Leakage Current and Self Discharge 

1.10.2025
47

Upcoming Events

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version