Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Releases Automotive Molded 2220 1kV C0G MLCC

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    VINATech Offers Smallest 100µF Al-Hybrid Capacitor

    Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

    Power Inductors Future: Minimal Losses and Compact Designs

    Bourns Unveils Automotive 3 Watt Gate Driver Transformer

    Murata Opens EMC Test Lab in Nuremberg to Enhance Automotive Support

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Molex Acquires Smiths Interconnect

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Releases Automotive Molded 2220 1kV C0G MLCC

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    VINATech Offers Smallest 100µF Al-Hybrid Capacitor

    Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

    Power Inductors Future: Minimal Losses and Compact Designs

    Bourns Unveils Automotive 3 Watt Gate Driver Transformer

    Murata Opens EMC Test Lab in Nuremberg to Enhance Automotive Support

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Molex Acquires Smiths Interconnect

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

What is an Inductor ?

2.5.2025
Reading Time: 7 mins read
A A

This article explains very basic definition of What is magnetism, What is an Inductor ? as passive electronic component and its main application and technologies.

Inductors, also referred to as coils or sometimes choke, are important passive components along with resistors (R) and capacitors (C). Coils usually refer to wound conductive wires, and among them, those with a single wound wire have in recent years particularly been referred to as inductors. If
it is intended for low-frequency applications it usually has a core with a closed magnetic circuit that consists of laminated iron (power frequency) or a ferrite toroid (above 1kHz).

RelatedPosts

Power Inductors Future: Minimal Losses and Compact Designs

Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

Inductor Resonances and its Impact to EMI

Inductance is usually represented by the symbol “L.” Although this L is said to come from Lenz of “Lenz’s Law” related to electromagnetic induction, there also appear to be various theories.

The basic structure of an inductor consists of a conductive wire wound in a coil shape and is able to convert electric energy to magnetic energy and store it inside the inductor. The storable amount of magnetic energy is determined by the inductance of the inductor and measured in Henry (H).

Inductors slow down current surges or spikes by temporarily storing energy in an electro-magnetic field and then releasing it back into the circuit. In hydrodynamic analogy (Fig.1.) inductor works as a large flywheel that offers resistance to every change in the flow/current. Anyone who has turned a bike upside down and turned the wheel up to speed knows, that there is a certain resistance to start. But, as soon as you have gained speed on the wheel it requires very little force to maintain its velocity. If you then want to brake, it requires a considerable force.

Figure 1. inductor as “flywheel” in hydrodynamic analogy

Inductor Applications

Inductors are primarily used in electrical power and electronic devices for these major purposes:

  1. Choking, blocking, attenuating, or filtering/smoothing high frequency noise in electrical circuits
  2. Storing and transferring energy in power converters (dc-dc or ac-dc)
  3. Creating tuned oscillators or LC (inductor / capacitor) “tank” circuits
  4. Impedance matching
  5. Inductors are also employed in electrical circuits to reduce EMI by attenuating high-frequency noise in order to meet EMC emission and immunity requirements.

What is a choke?

Primarily inductors consist of a coil. If we insert a core of magnetic material the inductive properties of the coil will increase. Such coils are then called chokes. When we draw current through a choke electric currents are induced in the magnetic material that try to create a counteracting magnetic field. These currents are undesired both for that reason and because they create heat losses.

Homogeneous magnetic bodies are excluded; the induced current would be too high. Instead mutually isolated ribbons are used or a powder technology where the binder material between the magnetic granules limits the induced current by their resistivity.

Connection

Inductors may be connected in series or in parallel; inductance then comply with the same laws as for resistors.

Connection in series

series inductance connection equation [1]

Connection in parallel
For loss free coils and coils with the same angle of phase applies

parallel inductance equation [2]

Inductive Reactance

Just as a capacitor the inductor presses a reactance on an AC circuit. To divide this reactance from that of a capacitor it is called the inductive reactance, XL. The quantity is expressed in ohms and complies with the formula:

inductive reactance equation [3]

ω = 2 x π x f, where f means the frequency expressed in Hz.

Basic Structure of Inductors and Inductance

The most basic inductors consist of a conductive wire wound in a coil shape, with both ends of the conductive wire as external terminals. In recent years, most inductors include a core, around which a conductive wire is wound.

Figure 2. basic structure of an inductor (left) and its practical examples (right)

The inductance of an inductor is determined by the following equation [4]:

inductance of an inductor equation [4]
  • L Inductance (H)
  • k Nagaoka coefficient
  • μ Core permeability (H/m)
  • N Number of coil turns
  • S Coil sectional area (m2)
  • l Coil length(m)
インダクタンス,电感,Inductance
Figure 3. illustration how to increase inductor inductance; source: Panasonic

Equivalent Circuit

An inductor can be described with the Figure 2.

Figure 2. Inductor with its winding on the core and with developed stray capacitance

The stray capacitances between the windings and between windings and core can be summarized to one single total capacitance CL. The winding wire also has resistance and in the magnetic material equivalent loss resistances appear. Taken together the characteristics of the inductor can be described with following equivalent circuit.

Figure 3. Equivalent circuit of the inductor.

At lower frequencies the capacitance plays a minor part, but as frequency rises we reach the self resonant frequency, fr, (sometimes abbreviated SRF) where the impedance curve arrives at a peak and then turns downwards and becomes capacitive.

inductor self-resonance frequency equation [4]

The measurement frequency (test frequency) is at a sufficient distance from fr and always is stated for respective inductor.

Electric vs Magnetic Field

Comparing magnetic fields with electrical fields, analogies emerge between certain parameters. These are summarized in Table 1.:

Tab. 1. Analogies between magnetic and electric fields

Related

Recent Posts

How to Select Ferrite Bead for Filtering in Buck Boost Converter

23.10.2025
5

Power Inductors Future: Minimal Losses and Compact Designs

22.10.2025
20

Bourns Unveils Automotive 3 Watt Gate Driver Transformer

22.10.2025
5

Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

21.10.2025
15

Murata Integrates Component Models into Cadence EDA Tools

21.10.2025
24

Bourns Releases High Inductance Common Mode Choke

16.10.2025
18

High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

15.10.2025
26

Bourns Releases High Clearance and Creepage 1500VDC Power Transformer

15.10.2025
24

YAGEO Unveils Compact 3.6kW LLC Transformer for OBC EV Charging

13.10.2025
143

Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

13.10.2025
31

Upcoming Events

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

Oct 30
11:00 - 12:00 CET

Space Ceramic Capacitors with Flexible Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version