Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Unveils COMPLETE Library v25.7 for Cadence AWR Design Environment

    YAGEO Expands Aluminum Capacitors with 80V Ratings for 48V Automotive and Industrial Systems

    Knowles Doubles Capacitance of its Class I Ceramic C0G Capacitors

    Wk 47 Electronics Supply Chain Digest

    TDK Combines Varistor and Gas Discharge Tube into One Component

    Vishay Extends Automotive TO-220 Thick Film Power Resistors with 30W Option

    Transient Suppression Guide

    Rubycon Releases High Capacitance Radial Lead Aluminum Electrolytic Capacitors

    October 2025 ECIA US Components Sales Sentiment Remains Strong but Weakens in November

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Unveils COMPLETE Library v25.7 for Cadence AWR Design Environment

    YAGEO Expands Aluminum Capacitors with 80V Ratings for 48V Automotive and Industrial Systems

    Knowles Doubles Capacitance of its Class I Ceramic C0G Capacitors

    Wk 47 Electronics Supply Chain Digest

    TDK Combines Varistor and Gas Discharge Tube into One Component

    Vishay Extends Automotive TO-220 Thick Film Power Resistors with 30W Option

    Transient Suppression Guide

    Rubycon Releases High Capacitance Radial Lead Aluminum Electrolytic Capacitors

    October 2025 ECIA US Components Sales Sentiment Remains Strong but Weakens in November

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Wi-Fi Powered Smart Clothes Will Monitor Your Health

10.6.2021
Reading Time: 3 mins read
A A
Flexible silk-based coil has been sewn onto a smart textile and is capable of harvesting energy from radio and Wi-Fi signals in the environment. Purdue University engineers have developed a method to transform existing cloth items into battery-free wearables resistant to laundry. (Purdue University photo/Rebecca McElhoe)

Flexible silk-based coil has been sewn onto a smart textile and is capable of harvesting energy from radio and Wi-Fi signals in the environment. Purdue University engineers have developed a method to transform existing cloth items into battery-free wearables resistant to laundry. (Purdue University photo/Rebecca McElhoe)

Purdue University engineers have developed a method to transform existing cloth items into battery-free wearables resistant to laundry. These smart clothes are powered wirelessly through a flexible, silk-based coil sewn on the textile.

In the near future, all your clothes will become smart. These smart cloths will outperform conventional passive garments, thanks to their miniaturized electronic circuits and sensors, which will allow you to seamlessly communicate with your phone, computer, car and other machines. This smart clothing will not only make you more productive but also check on your health status and even call for help if you suffer an accident. The reason why this smart clothing is not all over your closet yet is that the fabrication of this smart clothing is quite challenging, as clothes need to be periodically washed and electronics despise water.

RelatedPosts

Modelithics Unveils COMPLETE Library v25.7 for Cadence AWR Design Environment

YAGEO Expands Aluminum Capacitors with 80V Ratings for 48V Automotive and Industrial Systems

Knowles Doubles Capacitance of its Class I Ceramic C0G Capacitors

Purdue engineers have developed a new spray/sewing method to transform any conventional cloth items into battery-free wearables that can be cleaned in the washing machine.

“By spray-coating smart clothes with highly hydrophobic molecules, we are able to render them repellent to water, oil and mud,” said Ramses Martinez, an assistant professor in Purdue’s School of Industrial Engineering and in the Weldon School of Biomedical Engineering in Purdue’s College of Engineering. “These smart clothes are almost impossible to stain and can be used underwater and washed in conventional washing machines without damaging the electronic components sewn on their surface.”

The fingertips of a wireless voltage detection glove illuminates when the wearer’s hand approaches a live cable. . (Purdue University photo/Rebecca McElhoe)

This technology is published in the May 25 edition of Nano Energy. Martinez’s laboratory group has several videos about the technology on its dedicated YouTube channel:

  • “Wireless non-contact voltage detection glove”
  • “Powering OSC-based e-textiles underwater”
  • “Wirelessly powered washable textiles”

The rigidity of typical waterproof garments and their reduced breathability make them feel uncomfortable after being worn for a few hours.

“Thanks to their ultrathin coating, our smart clothes remain as flexible, stretchable and breathable as conventional cotton T-shirts,” Martinez said.

Unlike common wearables, the Purdue smart clothes do not require batteries for powering. By simply harvesting energy from Wi-Fi or radio waves in the environment, the clothes are capable of powering the circuitry sewn on the textile.

One example is a battery-free glove that illuminates its fingertips every time the user is near a live cable to warn about the possibility of an electric shock. Another is a miniaturized cardiac monitoring system sewn on a washable sweatband capable of monitoring the health status of the wearer.

“Such wearable devices, powered by ubiquitous Wi-Fi signals, will make us not only think of clothing as just a garment that keeps us warm but also as wearable tools designed to help us in our daily life, monitor our health and protect us from accidents,” Martinez said.

“I envision smart clothes will be able to transmit information about the posture and motion of the wearer to mobile apps, allowing machines to understand human intent without the need of other interfaces, expanding the way we communicate, interact with devices, and play video games.”

This technology can be fabricated in conventional, large-scale sewing facilities, which are expected to accelerate the development and commercialization of future smart clothes.

Related

Source: Purdue University

Recent Posts

Lightweight Model for MLCC Appearance Defect Detection

3.11.2025
34

High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

15.10.2025
50

Enhancing Energy Density in Nanocomposite Dielectric Capacitors

9.10.2025
49
a Schematic diagram of the BNT-based components constructed based on the entropy-increase strategy. b Digital photograph, cross-sectional SEM image, and EDS mappings of the MLCCs. c Unipolar P-E loops of MLCCs as a function of applied E. d Wrec and η of the MLCCs as a function of applied E. The comparison of (e) Wrec and η, (f) η and UF of the MLCCs with those of other recently reported state-of-the-art MLCCs. source: Nature Communications

Researchers Proposed Enhanced Energy Storage MLCC

1.10.2025
38

Development of Nitrogen-Doped Graphene Supercapacitors 

30.9.2025
22

Researchers Developed Reduced Graphene Oxide (rGO) High Energy Density Graphene Supercapacitors

18.9.2025
44

Researchers Enhanced 2D Ferromagnets Performance

16.9.2025
11

Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

19.8.2025
22

Additive Manufacturing of Mn-Zn Ferrite Planar Inductors

4.8.2025
48

Upcoming Events

Dec 2
December 2 @ 12:00 - December 4 @ 14:15 CET

Microwave Packaging Technology

Dec 9
December 9 @ 12:00 - December 11 @ 14:15 EST

Space and Military Standards for Hybrids and RF Microwave Modules

Dec 10
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version