Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Releases Industry First 1uF 100V X7R MLCCs in 1608 Case

    YAGEO Expands One Turn Inductors for AI and High-Efficiency Power Applications

    YAGEO Extends Lifetime of its Aluminum SMD Chip Capacitors to 5500hrs at 125C/Ur

    Murata Releases Worlds First 10µF/50V Automotive MLCC in 0805 Size

    Würth Elektronik Extends High Saturation Flat-Wire Power Inductors Line

    Vishay Expands Automotive High Frequency Thin Film Chip Resistors

    Advancements and Applications of Switch Capacitor Power Converters

    KYOCERA AVX Releases Robust Vertical-Mating Battery Connectors

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Releases Industry First 1uF 100V X7R MLCCs in 1608 Case

    YAGEO Expands One Turn Inductors for AI and High-Efficiency Power Applications

    YAGEO Extends Lifetime of its Aluminum SMD Chip Capacitors to 5500hrs at 125C/Ur

    Murata Releases Worlds First 10µF/50V Automotive MLCC in 0805 Size

    Würth Elektronik Extends High Saturation Flat-Wire Power Inductors Line

    Vishay Expands Automotive High Frequency Thin Film Chip Resistors

    Advancements and Applications of Switch Capacitor Power Converters

    KYOCERA AVX Releases Robust Vertical-Mating Battery Connectors

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

BME Stacked Ceramic Capacitors for Defense Applications

13.2.2023
Reading Time: 3 mins read
A A

Release of MIL-PRF-32535 for discrete MLCCs has led to the discussion of stacked ceramic capacitors based on BME technology.

Stacked ceramic capacitors are multiple discrete multi-layer ceramic capacitors (MLCCs) terminated onto a common lead-frame for through-hole or SMT operations. They capture many of the inherent benefits of MLCC technology, like a low-loss material set, low ESR (equivalent series resistance), and higher reliability.

RelatedPosts

KYOCERA AVX Releases Robust Vertical-Mating Battery Connectors

Optimization of IoT for GEO NB-NTN Hybrid Connectivity

KYOCERA AVX Presents Chip Antennas for SiP Market

Typical applications like switch mode power supplies need larger capacitance values and ripple current capabilities. Stacked MLCCs compete with discrete electrolytic capacitor technology in terms of capacitance range but have an advantage in terms of voltage and temperature capability, which naturally increases their reliability, thereby making this a preferred technology for defense applications despite its higher price point compared to electrolytics.

The Military Performance (MIL-PRF) standard for stacked ceramic capacitors is MIL-PRF-49470. Suppliers can build to this specification and provide their devices for predominantly defense and aerospace applications. They are manufactured using precious metal electrode (PME) MLCCs, which employ a combination of palladium, silver, and/or platinum as the bulk of the electrode system. This has been used for decades and has established a strong reputation for PME devices.

More recently, however, MIL-PRF-32535 was released, and this features base metal electrode (BME) technology, predominantly nickel. It’s intuitive to focus on the cost efficiency of BME over PME devices, but there are other ramifications in the manufacturing process that are not immediately apparent, but are helpful for designers, component engineers, and program managers in the defense sector to consider.

MLCCs must be sintered to create the monolithic block of dielectric and electrode layers. The temperature profile for firing BME devices is significantly different to PME devices. PME processes are more concerned about evaporating the PME materials than are BME processes. Because of this, there is more flexibility for ceramic engineers creating BME devices to develop a dielectric material that can be sintered at higher temperatures that will realize a much larger capacitance value in the finished MLCC that is smaller than an equivalent PME device, which has huge implications for defense applications.

The development and acceptance of MIL-PRF-32535 was made possible largely by the help of a few key suppliers in this field, and it’s interesting to note that new slash sheets are coming out for low inductance versions of these discrete MLCCs that can keep up with the high-speed decoupling demands of powerful FPGAs, for example.

The MIL-PRF-32535 for discrete MLCCs has led to the discussion of stacked ceramic capacitors based on BME technology. These would be similar to devices created under the existing M49470 standard, but with higher capacitance densities, following closely with the progression of high performance SiC and GaN HEMTs for commercial, automotive, and high-reliability applications.

Moving from a lead-less to a lead-frame assembly conveniently packages an array of MLCCs into a smaller footprint to conserve PCB surface area, but there are other benefits that may not be readily apparent. For example, MLCCs can potentially be prone to cracking from mechanical strain caused by PCB flexure, high shock and vibration environments, and thermal coefficient of expansion (TCE) mismatch from assembly, rework, temperature cycling tests, or even operating conditions, to name but a few. Although there are numerous sources of strain, their lead-frames provides relief to stacked ceramic capacitors.

In summary, stacked ceramic capacitors based on BME technology are a great fit for applications with tough mechanical, thermal, and electrical design constraints. 

Source: Designing Electronics, KYOCERA AVX

Recent Posts

TDK Releases Industry First 1uF 100V X7R MLCCs in 1608 Case

27.6.2025
5

YAGEO Expands One Turn Inductors for AI and High-Efficiency Power Applications

27.6.2025
6

YAGEO Extends Lifetime of its Aluminum SMD Chip Capacitors to 5500hrs at 125C/Ur

27.6.2025
3

Murata Releases Worlds First 10µF/50V Automotive MLCC in 0805 Size

26.6.2025
30

Würth Elektronik Extends High Saturation Flat-Wire Power Inductors Line

26.6.2025
9

Vishay Expands Automotive High Frequency Thin Film Chip Resistors

26.6.2025
14

Advancements and Applications of Switch Capacitor Power Converters

25.6.2025
23

KYOCERA AVX Releases Robust Vertical-Mating Battery Connectors

25.6.2025
8

Samsung Delivers Silicon Capacitors to Marwell AI Systems

24.6.2025
37

Stackpole Releases Low VCR High Voltage Chip Resistors

23.6.2025
11

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version