Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    KYOCERA AVX Expands Stacked MLCC Capacitors Offering

    Murata and QuantumScape Joint Development for Solid Batteries Ceramic Separators

    YAGEO Unveils Compact 3.6kW LLC Transformer for OBC EV Charging

    Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

    KYOCERA Releases Shielded Board-to-Board Connectors for Reliable EMI Protection

    Wk 41 Electronics Supply Chain Digest

    Samtec Expands Connector Severe Environment Testing Offering

    Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

    YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    KYOCERA AVX Expands Stacked MLCC Capacitors Offering

    Murata and QuantumScape Joint Development for Solid Batteries Ceramic Separators

    YAGEO Unveils Compact 3.6kW LLC Transformer for OBC EV Charging

    Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

    KYOCERA Releases Shielded Board-to-Board Connectors for Reliable EMI Protection

    Wk 41 Electronics Supply Chain Digest

    Samtec Expands Connector Severe Environment Testing Offering

    Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

    YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

NICHICON Expands Chip Polymer Aluminum Capacitors

17.6.2024
Reading Time: 3 mins read
A A

NICHICON CORPORATION has expanded the rated capacitance of the PCW series of chip-type conductive polymer aluminum solid electrolytic capacitors with a guaranteed superimposed ripple current at high temperatures, to meet the increasing demand in the automotive and telecommunications fields.

The PCW series is the industry’s first conductive polymer aluminum solid electrolytic capacitor with a guaranteed superimposed ripple current. The expanded rated capacitance values will contribute to circuit board designs that require high temperature compatibility.

RelatedPosts

NICHICON Releases 125C Long Life SMD Polymer Aluminum Capacitors

NICHICON Releases Long Life High Ripple Current Snap-In Aluminum Electrolytic Capacitors

Nichicon Develops High Voltage 150C Film Capacitors using Sabic High-Heat Foil

Overview and Development Background
Many low-voltage circuits using PMICs or CPUs/GPUs are being installed in automotive circuits, which have become increasingly more electrified. To meet increasing demand NICHICON launched in 2022 the PCW series.

The PCW series is the industry’s first chip-type conductive polymer aluminum solid electrolytic capacitors with a superimposed ripple current guaranteed at 125°C for 2,000 hours. This allows the PCW to satisfy the needs for high-temperature tolerance and high reliability.

NICHICON has now added φ8×7L and φ8×10L sizes to the existing product lineup, expanding the rated capacitance from 390μF to 1800μF. This expansion in sizes enables Nichicon to offer a wide range of products for various applications that require high capacitance and high ripple current while contributing to further performance enhancement and optimization of set devices.

Features
Conductive polymer aluminum solid electrolytic capacitors are products that use only conductive polymers as the electrolyte. They feature low ESR performance and high heat resistance as well as an extremely small decrease in capacitance over time due to the absence of an electrolytic solution.

The PCW series employs highly heat-resistant sealing rubber to maintain stability even at high temperatures while achieving low ESR and reduced self-heating by using a superior lead wire and other optimized materials.

Further, the series is the industry’s first conductive type capacitors to guarantee superimposed ripple current and high ripple current, contributing to circuits that require high ripple current in low-voltage ranges.

NICHICON has now expanded the PCW series by adding the new sizes of φ8×7L and φ8×10L to the existing sizes of φ5×6L and φ6.3×6L, expanding the rated capacitance from 390μF to 1800μF. The new high capacitance and high ripple currents will contribute to reducing the number of capacitors needed and reduce noise in circuit designs.

  • Rated voltage range :2.5 to 6.3V
  • Rated capacitance range :150 to 1800μF
  • Category temperature range:-55 to 125℃
  • Product dimensions :⌀5×6L to ⌀8×10L (⌀5×6.3L to ⌀6.3×6L Sizes are in mass production)
  • Life :2,000 hours guaranteed at 125℃(Rated ripple current superimposed)

Related

Source: Nichicon

Recent Posts

KYOCERA AVX Expands Stacked MLCC Capacitors Offering

14.10.2025
3

YAGEO Unveils Compact 3.6kW LLC Transformer for OBC EV Charging

13.10.2025
98

KYOCERA Releases Shielded Board-to-Board Connectors for Reliable EMI Protection

13.10.2025
18

Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

10.10.2025
31

YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

9.10.2025
19

Enhancing Energy Density in Nanocomposite Dielectric Capacitors

9.10.2025
26

Advances in the Environmental Performance of Polymer Capacitors

8.10.2025
61

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

8.10.2025
23

Paumanok Releases Capacitor Foils Market Report 2025-2030

7.10.2025
24

Modelithics Welcomes CapV as a Sponsoring MVP

7.10.2025
4

Upcoming Events

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 15
20:00 - 20:30 CEST

Planar Design & Simulation

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version