Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Reliability of E-Textile Conductive Paths and Passive Component Interfaces

    Flaked Tantalum Powders: High Capacitance Powders for High Reliable Tantalum Capacitors

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Design of High Precision Integrated Resistive Voltage Dividers

    Textile-Based Antennas

    Space Evaluation Testing on SAW Filter Based on Piezo-On-Insulator Technology

    Samsung Electro-Mechanics Releases 470nF 16V MLCC in 0402 Size

    Beyond 85/85 Lifetime Estimation of PP Film Capacitors in Humid Environments

    Life Cycle Assessment of a Graphene-Based Supercapacitor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Reliability of E-Textile Conductive Paths and Passive Component Interfaces

    Flaked Tantalum Powders: High Capacitance Powders for High Reliable Tantalum Capacitors

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Design of High Precision Integrated Resistive Voltage Dividers

    Textile-Based Antennas

    Space Evaluation Testing on SAW Filter Based on Piezo-On-Insulator Technology

    Samsung Electro-Mechanics Releases 470nF 16V MLCC in 0402 Size

    Beyond 85/85 Lifetime Estimation of PP Film Capacitors in Humid Environments

    Life Cycle Assessment of a Graphene-Based Supercapacitor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Stackpole Unveils Metal Element High Current Chip Jumpers

19.8.2025
Reading Time: 2 mins read
A A

Stackpole Electronics, Inc. introduces the MCJ series, an innovative line of high current SMD chip jumpers designed to meet the growing demands of modern electronic applications.

Featuring a metal element and exceptionally low resistance, the MCJ series is engineered to efficiently manage high currents.

RelatedPosts

Stackpole Extends Voltage of High Temp Chip Resistors

Stackpole Unveils 1W High Power Density Current Sense Chip Resistor

Stackpole Releases Low VCR High Voltage Chip Resistors

The current ratings span from 8 amps in an 0201 chip size to an impressive 122 amps in a 2512 chip size, with an overload current capability reaching up to 244 amps.

Zero-ohm jumpers are essential in various electronic circuits across diverse markets and end products, facilitating simplified circuitry routing and enhanced manufacturability.

While traditional thick film jumpers are generally limited to 10 amps or less, the MCJ series stands out with its superior current handling capabilities, making it ideal for more demanding applications and less susceptible to surge currents. Furthermore, the MCJ series supports the use of smaller components, allowing for reduced board space and more compact product designs.

Features:

  • Robust all metal structure
  • Low resistance values
  • Higher current ratings than most jumpers
  • RoHS compliant, REACH compliant, lead free, and halogen free

Related

Source: Stackpole

Recent Posts

Reliability of E-Textile Conductive Paths and Passive Component Interfaces

29.9.2025
3

Design of High Precision Integrated Resistive Voltage Dividers

29.9.2025
4

Beyond 85/85 Lifetime Estimation of PP Film Capacitors in Humid Environments

26.9.2025
17

Pure-Polyimide Flexible Heater for High-Reliability Applications

26.9.2025
10

Samsung Electro-Mechanics Unveils Ultra-High-Capacitance MLCCs for AI Servers

26.9.2025
11

Passive Components J-STD-075 Process Sensitivity Level Classification And Labeling

25.9.2025
21

New EPN Dielectric Film Capacitors Featuring High Temp and Power Density

25.9.2025
35

E-Textile SMD-Ribbon Joints Protections Against Sweat

25.9.2025
16

Bourns Releases Semi-Shielded Power Inductor with Polarity Control

25.9.2025
11

Quality Challenges and Risk Mitigation for Passive Components in Harsh Environments

24.9.2025
30

Upcoming Events

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 8
11:00 - 12:00 CEST

PCB Online Shop – simply “Made in Germany” by Würth Elektronik

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version