Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

    Bourns Releases New Current Transformer

    Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

    binder Offers Wide Range of M12 Panel Mount Connectors

    Bourns Releases New Shielded Power Inductors for DDR5

    Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

    Wk 21 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

    Bourns Releases New Current Transformer

    Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

    binder Offers Wide Range of M12 Panel Mount Connectors

    Bourns Releases New Shielded Power Inductors for DDR5

    Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

    Wk 21 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

TDK Develops Spin-Memristor for Neuromorphic Devices to Reduce AI Power Consumption to 1/100

3.10.2024
Reading Time: 4 mins read
A A

TDK develops “spin-memristor” for neuromorphic devices, and collaborates with CEA and Tohoku University to achieve practical application of neuromorphic devices able to reduce power consumption of AI down to 1/100.

TDK Corporation announced the development of a neuromorphic element called a “spin-memristor” that has very low power consumption.

RelatedPosts

TDK Releases 0201 High-Frequency Smallest Inductors

TDK Unveils Industry Highest Rated Current Multilayer Chip Beads

TDK Releases 750A High-Power 1500V Contactor

By mimicking the energy-efficient operation of the human brain, this element could cut the power consumption of AI applications down to 1/100th of traditional devices.

Collaborating with the French research organization CEA (Alternative Energies and Atomic Energy Commission), TDK has proven that its “spin-memristor” can serve as the basic element of a neuromorphic device. Going forward, TDK will collaborate with the Center for Innovative Integrated Electronic Systems at Tohoku University on the practical development of the technology.

In recent years, digital transformation (DX) has advanced due to the development of AI; it is predicted that energy consumption utilizing big data and AI will boom and make certain issues more apparent — such as the complexity around the computational processing of vast amounts of data, and the increased power consumption associated with the development of AI. TDK strives to contribute to solving these social and environmental issues.

The human brain requires around 20 W of power, which enables it to make more complex decisions than current digital AI processors, but with far lower power consumption. Therefore, TDK set itself a goal to develop a device that electrically simulates the synapses of the human brain: the memristor.

While conventional memory elements store data in the form of either 0 or 1, a “spin-memristor” can store data in analog form, just as the brain does. This makes it possible to perform complex computations with ultra-low power consumption. Although memristors for neuromorphic devices already exist, they face issues such as changes in resistance over time, difficulties in controlling the precise writing of data, and the need for control to ensure that data is retained. TDK’s “spin-memristor” solves these issues and is expected to offer immunity to environmental influences and long-term data storage while reducing power consumption by cutting leakage current in existing devices.

To achieve this, TDK started collaborating with the CEA in 2020. With this support, we developed an AI circuit equipped with a “spin-memristor” (3 elements × 2 sets × 4 chips) and confirmed its successful operation through a sound separation demonstration, proving that “spin-memristors” can serve as basic elements in AI circuits.

AI circuit board equipped with four spin-memristor ceramic packages

In the demonstration, even when three types of sound (music, speech, and noise) were mixed with arbitrary ratios, the circuit was able to learn and separate the three types of sound in real-time. In general machine learning, AI operations are performed based on data that the AI model has previously been trained on, but TDK’s device is uniquely capable of learning in a changing environment in real-time.

Now that it has been confirmed that the “spin-memristor” can serve as the basic element of a neuromorphic device, TDK will advance this project from basic development to the next stage, practical application. The manufacturing of these products requires the integration of semiconductor and spintronic manufacturing processes. This integration has been achieved in the manufacturing of MRAM, a product similar to memristors, and TDK has decided to pursue integrated technological development on a joint basis with Tohoku University, a leading academic institution in MRAM research and development.

Comment from Dr. Marc Duranton, Senior Fellow of CEA
“The synergy between TDK and CEA is remarkable, as our complementary expertise fosters a highly creative and constructive collaboration. This research partnership is breaking new ground to develop more sustainable, reliable, highly efficient solutions that will meet the growing demands of modern AI applications.”

Comment from Dr. Tetsuo Endoh, the director of CIES Tohoku University
“AI semiconductors are extremely important for the information-oriented society of the future, but the societal issues are improving AI processing power and reducing power consumption. In light of this social demand, TDK’s AI semiconductor development program, which fuses memristor and spintronics technology, is extremely important. We will do our best to contribute to this project with the academic knowledge held by Tohoku University and the manufacturing technology of the 12-inch prototype line.”

Glossary

  • Spintronics: A technology that utilizes both the charge and spin of electrons or the spin element alone

Features

  • Technology that reduces the power consumption of AI computations down to 1/100
  • “Spin-memristor” using spintronics
  • Novel “spin-memristor” can solve the reliability issues experienced with conventional memristors
  • The aim is to solve social issues associated with AI through international collaboration between industry, academia and government

Related

Source: TDK

Recent Posts

H2-Assisted Thermal Treatment of Electrode Materials Increases Supercapacitors Energy Density

13.5.2025
12

Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

12.5.2025
36

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
72

3D Printing of Passive Components from Manufacturer Perspective

26.4.2025
45

Hybrid Electrochemical Electrolytic Capacitor Provides High Frequency and High Capacitance Performance

25.4.2025
72

TDK Releases Immersion Temperature Sensors for EV Powertrain Cooling

27.3.2025
31

Supercapacitor Separator with High Ionic Conductivity Enables Line-Filter Applications at High Power

21.3.2025
49

Interlacing Strain Engineering Boost Energy Density of MLCCs

12.2.2025
85

YAGEO Offer Bid for Shibaura Electronics

6.2.2025
101

Researchers Developed BaTiO3 based MLCC Material with High Energy Density at High Temperature Range

21.1.2025
107

Upcoming Events

Jun 4
11:00 - 12:00 CEST

Würth Elektronik PCB Production in Asia

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Filter Q Factor Explained

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version