Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Library for MATLAB: Measurement-Based Models for Microwave and RF Passive Components

    Bourns Extends Multilayer Chip Inductors Offer for RF and Wireless Designs

    Researchers developed a polymer capacitor by combining two cheap, commercially available plastics. The new polymer capacitor makes use of the transparent material — pictured here, with vintage Penn State athletic marks visible through it — to store four times the energy and withstand significantly more heat.  Credit: Penn State

    Penn State Demonstrated Polymer Alloy Capacitor Film with 4× Energy Density up to 250C

    ECIA January 2026 Reports Strong Sales Confidence

    Vishay Unveils Ultra-Compact 0201 Thick Film Chip Resistors

    Würth Elektronik Component Data Live in Accuris

    Coilcraft Releases Automotive Common Mode Chokes

    MLCC Manufacturers Consider Price Increase as AI Demand Outpaces Supply

    YAGEO Extends Antenna Portfolio with Wi‑Fi 6E/7 and Tri‑band GNSS Solutions

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Library for MATLAB: Measurement-Based Models for Microwave and RF Passive Components

    Bourns Extends Multilayer Chip Inductors Offer for RF and Wireless Designs

    Researchers developed a polymer capacitor by combining two cheap, commercially available plastics. The new polymer capacitor makes use of the transparent material — pictured here, with vintage Penn State athletic marks visible through it — to store four times the energy and withstand significantly more heat.  Credit: Penn State

    Penn State Demonstrated Polymer Alloy Capacitor Film with 4× Energy Density up to 250C

    ECIA January 2026 Reports Strong Sales Confidence

    Vishay Unveils Ultra-Compact 0201 Thick Film Chip Resistors

    Würth Elektronik Component Data Live in Accuris

    Coilcraft Releases Automotive Common Mode Chokes

    MLCC Manufacturers Consider Price Increase as AI Demand Outpaces Supply

    YAGEO Extends Antenna Portfolio with Wi‑Fi 6E/7 and Tri‑band GNSS Solutions

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

TDK Extends Automotive Varistors with LIN and CAN Models

20.2.2024
Reading Time: 4 mins read
A A

TDK Corporation has announced the addition of two new varistors to its AVRH series for automotive applications.

Both are characterized by the high electrostatic discharge (ESD) withstanding voltage demanded to ensure the safe operation of safety-critical automotive functions that comprise advanced driver assistance systems (ADAS).

RelatedPosts

TDK Releases High Temp 175C Automotive NTC thermistors

TDK Unveils 125C Compact DC Link Film Capacitors

TDK Releases Stackable µPOL 25A Power Modules

Both of the two new varistors in TDK’s AVRH series are compliant with the AEC-Q200 automotive standard and fulfill 25 kV voltage resistance requirement under IEC 61000-4-2 standard in the electrostatic discharge test.

They operate within the temperature range of -55 °C to +150 °C. They not only meet anti-ESD requirements, they also have minimal footprints, useful as automotive OEMs attempt to miniaturize.
Mass production of both the AVRH10C220YT201MA8 and the AVRH16A2C270KT200NA8 is scheduled to begin in March 2024.

The percentage of electronics in the total BOM (bill of materials) of automobiles is increasing as automotive OEMs add and refine ADAS features such as lane departure warning, collision avoidance, and adaptive cruise control. That is true of electric vehicles (EVs), hybrids, and traditional gas-fueled vehicles alike. Auto manufacturers are also working on autonomous driving, which requires the inclusion of even more sophisticated electronics. The electronic control units (ECUs) that manage all of these new electronic subsystems are particularly susceptible to damage from ESD. The problem is that even the briefest interruptions in safety-critical ADAS and autonomous driving functions are intolerable, and the potential for the problem only increases as more electronics are added to each vehicle.

Varistors are fundamental circuit elements for handling severe voltage irregularities. In automotive applications, they protect delicate ECUs, and are instrumental in conforming to automotive safety standards such as AEC-Q200 and IEC 61000-4-2.

The AVRH10C220YT201MA8 is designed to support electronics on a LIN bus. It has a maximum continuous voltage of 16 V and a capacitance of 200 pF. The 1005 size (1.0 mm (L) x 0.5 mm (W) x 0.5 mm (H)) is 75% smaller than the existing model. The smaller size allows customer devices to be smaller therefore reducing the consumption of materials. This product also uses TDK’s proprietary coating technology to enhance durability. Small as it is, it achieves the high reliability needed to meet the automotive quality standard.

AVRH16A2C270KT200NA8 is designed to support electronics on a CAN bus. It has a 2-in-1 array structure, in which the functions of two varistors are integrated into a single element. Another characteristic is that TDK’s proprietary design technology minimizes the capacitance difference between the channels. It is designed at the 1608 size (1.6 mm (L) x 0.8 mm (W) x 0.6 mm (H)).

Moving forward, TDK will continue providing customers with flexible support for designing their diversified automotive equipment by expanding the product lineup through further downsizing, increased operating voltage and expansion of capacitance range, etc.

Glossary

  • IEC 61000-4-2: An electrostatic discharge immunity standard formulated by the International Electrotechnical Commission (IEC)
  • CAN: Controller Area Network, one of the communication protocols for automotive LANs.
  • LIN: Local Interconnect Network, referring to a communication standard with the goal of reducing the cost of automotive networks
  • ADAS: Advanced driver-assistance systems
  • ECU: Electronic control unit
  • ESD: Electrostatic discharge

Features

AVRH Series

  • ESD resistance of 25kV
  • Expansion of operating areas as it supports temperatures up to 150 °C
  • AEC-Q200 compliant

AVRH10C220YT201MA8

  • Space saving by small footprint
  • An environmental design that reduces the consumption of materials

AVRH16A2C270KT200NA8

  • A 2-in-1 array structure in which a single chip can function as two varistors
  • A specification is that the capacitance difference between channels is minimized (to less than 1.0 pF)

Applications

  • AVRH10C220YT201MA8: Automotive LIN systems
  • AVRH16A2C270KT200NA8: Automotive CAN and CAN-FD systems

Related

Source: TDK

Recent Posts

Researchers developed a polymer capacitor by combining two cheap, commercially available plastics. The new polymer capacitor makes use of the transparent material — pictured here, with vintage Penn State athletic marks visible through it — to store four times the energy and withstand significantly more heat.  Credit: Penn State

Penn State Demonstrated Polymer Alloy Capacitor Film with 4× Energy Density up to 250C

19.2.2026
12

Vishay Unveils Ultra-Compact 0201 Thick Film Chip Resistors

19.2.2026
7

Würth Elektronik Component Data Live in Accuris

19.2.2026
12

Coilcraft Releases Automotive Common Mode Chokes

19.2.2026
9

SCHURTER Introduces 2410 SMD Fuse for Robust AC/DC Protection

17.2.2026
11

TDK Releases High Temp 175C Automotive NTC thermistors

17.2.2026
10

Vishay Releases Sulfur‑Resistant Chip Resistors

12.2.2026
11

TDK Unveils 125C Compact DC Link Film Capacitors

11.2.2026
34

Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

2.2.2026
43

Upcoming Events

Feb 24
16:00 - 17:00 CET

Mastering Galvanic Isolation: Ensuring Safety in Power Electronics

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • 3-Phase EMI Filter Design, Simulation, Calculation and Test

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version