Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns SSD‑1000A AEC‑Q Digital Current Sensors

    YAGEO High‑Capacitance X7R Automotive MLCC Extensions

    How Metal Prices Are Driving Passive Component Price Hikes

    Modelithics COMPLETE Library v25.8 for Keysight ADS

    Taiyo Yuden Releases 165C Automotive Multilayer Metal Power Inductor in 1608 Size

    Energy-Controlled Structural Evolution of Amorphous Ta₂O₅ in Tantalum Anodes

    Jianghai Vibration‑Resistant Aluminum Capacitors Guidelines for Industrial Electronics

    2025 Top Passive Components Blog Articles

    Exxelia Releases Custom Smart Integrated Magnetics for Space Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns SSD‑1000A AEC‑Q Digital Current Sensors

    YAGEO High‑Capacitance X7R Automotive MLCC Extensions

    How Metal Prices Are Driving Passive Component Price Hikes

    Modelithics COMPLETE Library v25.8 for Keysight ADS

    Taiyo Yuden Releases 165C Automotive Multilayer Metal Power Inductor in 1608 Size

    Energy-Controlled Structural Evolution of Amorphous Ta₂O₅ in Tantalum Anodes

    Jianghai Vibration‑Resistant Aluminum Capacitors Guidelines for Industrial Electronics

    2025 Top Passive Components Blog Articles

    Exxelia Releases Custom Smart Integrated Magnetics for Space Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

The Roles of Capacitors in EV Inverters

31.7.2024
Reading Time: 4 mins read
A A

This article based on Knowles Precision Devices blog explains role of capacitors in EV inverters.

The power electronic systems in an electric vehicle (EV) feature a wide variety of capacitors.

RelatedPosts

Knowles Doubles Capacitance of its Class I Ceramic C0G Capacitors

Knowles Releases High Q Non-Magnetic X7R MLCCs for Medical Imaging

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

From DC-link capacitors to safety capacitors and snubber capacitors, these components play a critical role in stabilizing and safeguarding the electronics from factors like voltage spikes and electromagnetic interference (EMI).

Here, we’ll focus on the capacitors used in the EV traction inverter.  

Traction inverters are a critical power electronic device in EVs. They convert direct current (DC) from the vehicle’s batteries into alternating current (AC) to power the electric motor that drives the vehicle.  

Before making any decision on what capacitors you need, you must first decide which traction inverter topology is right for your specific application.

Figure 1: High-voltage power systems in battery electric vehicles (BEVs) 

There are four main topologies of traction inverters, with differences based on type of switch, voltage and levels. Choosing the appropriate topology and related components is critical in designing traction inverters that meet your application’s efficiency and cost requirements.  

Types of Traction Inverter Topologies for Electric Vehicles 

As stated, there are four most used topologies in EV traction inverters, as shown in Figure 2.:

  • 2-Level Topology featuring the 650V IGBT switch  
  • 2-Level Topology featuring the 650V SiC MOSFET switch
  • 2-Level Topology featuring the 1200V SiC MOSFET switch  
  • 3-Level Topology featuring the 650V GaN Switch 

These topologies fall into two subsets: 400V Powertrains & 800V Powertrains. Between the two subsets, it’s more common to use the “2-level” topologies. ​“Multi-level” topologies are used in higher voltage systems such as electric trains, tramways and ships but they are less popular due to higher cost and complexity.

Figure 2: Four of the most used topologies for EV traction inverters. Source: Yole 

The Role of Capacitors in EV Traction Inverter Application  

There are many different types of capacitors that ensure the efficient and effective operation of your traction inverter. Here are the main players:

  • Snubber Capacitors – Voltage suppression is important to protect circuits from large voltage spikes. Snubber capacitors connect to the high-current switching node to protect electronics from voltage spikes.
  • X & Y Safety Capacitors – Safety capacitors mitigate the effects of transient voltages and interference in electrical and electronic circuits, especially in high-voltage applications. There are two classes of capacitors, Class-X and Class-Y, that are both used to minimize EMI in different applications.
  • Bypass Capacitors – All electronics depend on clean power, and bypass capacitors are crucial for ensuring devices safely meet their power specifications. These capacitors act as filters, bypassing high-frequency noise.
  • Decoupling Capacitors – In power supplies, decoupling capacitors are placed near sensitive components to suppress voltage fluctuations or noise on power supply lines.
  • DC-Link Capacitors – In EV applications, DC-link capacitors help offset the effects of inductance in inverters. They also serve as filters that protect EV subsystems from voltage spikes, surges and EMI.
  • DC-Link Supporting Filters – Smoothing ripples, storing energy and suppressing surges are critical functions of DC-link supporting filters.
  • Flying Capacitors – EVs needs lightweight, compact components. Flying capacitors can balance out voltage and extend the longevity of components. 

All of these roles are very important to the safety and functionality of traction inverters, but the design and specifications of these capacitors change based on which traction inverter topology you choose.

Related

Source: Knowles Precision Devices

Recent Posts

Bourns SSD‑1000A AEC‑Q Digital Current Sensors

8.1.2026
7

YAGEO High‑Capacitance X7R Automotive MLCC Extensions

8.1.2026
6

How Metal Prices Are Driving Passive Component Price Hikes

8.1.2026
15

Modelithics COMPLETE Library v25.8 for Keysight ADS

7.1.2026
18

Taiyo Yuden Releases 165C Automotive Multilayer Metal Power Inductor in 1608 Size

7.1.2026
21

Energy-Controlled Structural Evolution of Amorphous Ta₂O₅ in Tantalum Anodes

6.1.2026
24

Jianghai Vibration‑Resistant Aluminum Capacitors Guidelines for Industrial Electronics

6.1.2026
15

2025 Top Passive Components Blog Articles

5.1.2026
52
Credit: Institute of Science Tokyo

Researchers Demonstrated 30nm Ferroelectric Capacitor for Compact Memory

2.1.2026
27

Upcoming Events

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version