Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    Littelfuse Acquires Basler Electric Enhancing High-Growth Industrial Market

    DigiKey Grows Inventory with Over 31K New Stocking Parts in Q3 2025

    Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

    Source: Semiconductor Intelligence

    October 25 Electronics Production: U.S. vs. Global Changes

    binder expands M8 portfolio with 360° shielded cable connectors

    Vishay Releases Space-Grade 150 W 28V Planar Transformers

    October 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    Littelfuse Acquires Basler Electric Enhancing High-Growth Industrial Market

    DigiKey Grows Inventory with Over 31K New Stocking Parts in Q3 2025

    Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

    Source: Semiconductor Intelligence

    October 25 Electronics Production: U.S. vs. Global Changes

    binder expands M8 portfolio with 360° shielded cable connectors

    Vishay Releases Space-Grade 150 W 28V Planar Transformers

    October 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Bourns Introduces High Current TLVR Inductors for Fast Transient Response Requirements

9.5.2024
Reading Time: 3 mins read
A A

Bourns’ new multiphase trans-inductor voltage regulator (TLVR) inductors deliver extremely high current capabilities, low inductance, and low DC resistance (DCR) that are designed to meet today’s data-driven application performance needs.

Engineered with a dual-winding structure and low inductance, the Bourns® Model TLVR1005T and TLVR1105T Series provide fast transient response that can scale to CPU, FPGA and ASIC load requirements.

RelatedPosts

Bourns Unveils Automotive 3 Watt Gate Driver Transformer

Bourns Release Automotive 4-Terminal Shunt Resistors

Bourns Releases High Inductance Common Mode Choke

Bourns, Inc., a leading manufacturer and supplier of electronic components for power, protection, and sensing solutions, today introduced its Model TLVR1005T and TLVR1105T Series.

Bourns’ new multiphase trans-inductor voltage regulator (TLVR) inductors deliver extremely high current capabilities, low inductance, and low DC resistance (DCR) that are designed to meet today’s data-driven application performance needs. These types of applications have evolved in processing performance and now require the support of power bead inductors that can match their exceptionally high current specifications in the same, if not less, board space. Bourns® Model TLVR1005T and TLVR1105T Series multiphase TLVR inductors meet these requirements for servers, workstations, data centers, storage systems, and desktop computers, as well as in graphics cards and a variety of battery-powered systems.

A problem arises with traditional multiphase voltage regulators (VRs) in balancing performance, as high-current output demands require an increase in the duty cycle previously handled via long individual-phase stages. New multiphase TLVR architectures, developed to mitigate transient responses stemming from sudden increases in load output, are widely adopted to address these concerns. As such, system designers see the advantages of phase coupling in TLVR architectures, enabling extremely fast transient response, scalable with CPU, FPGA, and ASIC load requirements. The adoption of this architecture allows designers to develop robust systems without sacrificing other critical design parameters such as board space, system efficiency, power density, or BOM costs.

Engineered with a dual-winding structure and clip type coil, the Bourns® Model TLVR1005T and TLVR1105T Series deliver the low inductance and extremely high current capabilities (Irms up to 77 A and Isat up to 160 A) that are needed in a new generation of multiphase power solutions. The series’ shielded construction offers low radiation with an inductance range of 70 to 200nH and an operating temperature range of -40 to +125 ºC.

The Bourns® Model TLVR1005T and TLVR1105T Series are available now and are RoHS compliant and halogen free. 

Features

  • Shielded construction for low radiation
  • Dual-winding structure
  • Extremely high current
  • Inductance range: 70 to 200 nH
  • RoHS compliant and halogen free

Applications

  • Servers and workstations
  • Data centers
  • Data networking and storage systems
  • Notebook and desktop computers
  • Graphic cards and battery powered systems
  • Multi-phase regulators
  • Voltage Regulator Modules (VRMs)

Related

Source: Bourns

Recent Posts

Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

30.10.2025
2

Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

30.10.2025
3

Vishay Releases Space-Grade 150 W 28V Planar Transformers

29.10.2025
6

Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

27.10.2025
23

How to Select Ferrite Bead for Filtering in Buck Boost Converter

23.10.2025
40

VINATech Offers Smallest 100µF Al-Hybrid Capacitor

23.10.2025
37

Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

23.10.2025
10

Power Inductors Future: Minimal Losses and Compact Designs

30.10.2025
45

Bourns Unveils Automotive 3 Watt Gate Driver Transformer

22.10.2025
9

Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

30.10.2025
50

Upcoming Events

Nov 4
10:00 - 11:00 PST

Design and Stability Analysis of GaN Power Amplifiers using Advanced Simulation Tools

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

Nov 6
14:30 - 16:00 CET

Self-healing polymer materials for the next generation of high-temperature power capacitors

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version