Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Rubycon PMLCAP DC‑Link Film Capacitors in Mass Production

    Bourns SSD‑1000A AEC‑Q Digital Current Sensors

    YAGEO High‑Capacitance X7R Automotive MLCC Extensions

    How Metal Prices Are Driving Passive Component Price Hikes

    Modelithics COMPLETE Library v25.8 for Keysight ADS

    Taiyo Yuden Releases 165C Automotive Multilayer Metal Power Inductor in 1608 Size

    Energy-Controlled Structural Evolution of Amorphous Ta₂O₅ in Tantalum Anodes

    Jianghai Vibration‑Resistant Aluminum Capacitors Guidelines for Industrial Electronics

    2025 Top Passive Components Blog Articles

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Rubycon PMLCAP DC‑Link Film Capacitors in Mass Production

    Bourns SSD‑1000A AEC‑Q Digital Current Sensors

    YAGEO High‑Capacitance X7R Automotive MLCC Extensions

    How Metal Prices Are Driving Passive Component Price Hikes

    Modelithics COMPLETE Library v25.8 for Keysight ADS

    Taiyo Yuden Releases 165C Automotive Multilayer Metal Power Inductor in 1608 Size

    Energy-Controlled Structural Evolution of Amorphous Ta₂O₅ in Tantalum Anodes

    Jianghai Vibration‑Resistant Aluminum Capacitors Guidelines for Industrial Electronics

    2025 Top Passive Components Blog Articles

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

H2-Assisted Thermal Treatment of Electrode Materials Increases Supercapacitors Energy Density

13.5.2025
Reading Time: 3 mins read
A A

Researchers from Italy published by ACS Appl. Mater. Interfaces conducted a systematic study of H2-assisted thermal treatment on activated carbon and corresponding electrodes for electrochemical double-layer supercapacitors (EDLCs).

The treatment improved EDLC performance by eliminating surface impurities, increasing surface capacitance, and altering active material and binder contents. This study provides insights into the relationship between electrode material modifications and EDLC performance.

RelatedPosts

Rubycon PMLCAP DC‑Link Film Capacitors in Mass Production

Bourns SSD‑1000A AEC‑Q Digital Current Sensors

YAGEO High‑Capacitance X7R Automotive MLCC Extensions

Introduction:

Electrochemical Double-Layer Capacitors (EDLCs) are vital energy storage devices, relying on the electric double-layer mechanism at the interface of carbon-based electrodes and electrolytes.

This mechanism emphasizes the significance of high-surface-area carbon materials. However, current limitations in capacitance due to inaccessible micropores, quantum capacitance effects, and surface impurities hinder their full potential.

The study focuses on the role of hydrogen-assisted (H₂-assisted) thermal treatment in enhancing EDLC performance.

Key Points:

  1. Challenges in EDLCs: Limited capacitance due to micropores, quantum effects, and impurities.
  2. H₂-Assisted Thermal Treatment: A method to improve surface properties and capacitance.
  3. Experimental Approach: Systematic treatment of activated carbon electrodes at varying temperatures (500–800°C).
  4. Results: Up to 35% energy density improvement, with significant increases in surface and gravimetric capacitance.
  5. Conclusions: Enhanced EDLC performance through impurity removal and surface modification.

Extended Summary:

The article presents a comprehensive study on improving the performance of EDLCs through H₂-assisted thermal treatment of activated carbon electrodes. EDLCs store energy via ion adsorption at electrode interfaces, and their efficiency is influenced by the surface area, porosity, electronic properties, and the presence of surface contaminants.

The research addresses key limiting factors such as inaccessible micropores that restrict ion flow, quantum capacitance effects that reduce overall capacitance, and surface impurities like hydrocarbons and adsorbed species that form dielectric barriers. These barriers impede effective ion adsorption, thereby lowering the EDLC’s performance.

To tackle these issues, the study applies H₂-assisted thermal treatments to activated carbon electrodes, aiming to remove surface impurities and enhance the electrode’s electrochemical properties. The materials were treated at varying temperatures (500°C, 600°C, 700°C, and 800°C), and their chemical, structural, and thermal properties were analyzed using advanced characterization techniques including X-ray photoelectron spectroscopy, Raman spectroscopy, and thermogravimetric analysis.

The results illustrate that the thermal treatment leads to significant improvements in EDLC performance. Notably, the treated electrodes exhibited over 35% higher energy density compared to untreated ones. Surface capacitance (CsurfAC) improved by approximately 37% due to the removal of impurities, which reduced the dielectric barrier effect and enhanced ion accessibility. Gravimetric capacitance (CgAC), normalized to the activated carbon mass, also rose by 28%, demonstrating improved charge storage capacity.

Interestingly, the study challenges prior assumptions about graphitization during thermal treatment, finding that the observed performance gains are mainly due to impurity desorption rather than structural graphitization. The treated materials showed slight densification but retained high surface areas conducive to charge storage.

Conclusion:

The research confirms that H₂-assisted thermal treatment is an effective post-production process for enhancing EDLC electrode performance. This method improves both the chemical surface properties and electrochemical capabilities of activated carbon electrodes by eliminating surface impurities and optimizing active material content. These findings offer valuable insights for developing high-performance, energy-dense EDLCs, potentially advancing energy storage technologies.

Read the full paper:

Matteo Gentile, et col,. Bedimensional.it. Hydrogen-Assisted Thermal Treatment of Electrode Materials for Electrochemical Double-Layer Capacitors, ACS Appl. Mater. Interfaces 2024, 16, 11, 13706–13718, https://doi.org/10.1021/acsami.3c18629

Related

Source: ACS Appl. ?ater. Interfaces

Recent Posts

Rubycon PMLCAP DC‑Link Film Capacitors in Mass Production

9.1.2026
11

YAGEO High‑Capacitance X7R Automotive MLCC Extensions

8.1.2026
32

How Metal Prices Are Driving Passive Component Price Hikes

8.1.2026
110

Modelithics COMPLETE Library v25.8 for Keysight ADS

7.1.2026
23

Energy-Controlled Structural Evolution of Amorphous Ta₂O₅ in Tantalum Anodes

6.1.2026
35

Jianghai Vibration‑Resistant Aluminum Capacitors Guidelines for Industrial Electronics

6.1.2026
23

2025 Top Passive Components Blog Articles

5.1.2026
81
Credit: Institute of Science Tokyo

Researchers Demonstrated 30nm Ferroelectric Capacitor for Compact Memory

2.1.2026
29

Towards Green and Sustainable Supercapacitors

30.12.2025
39

Upcoming Events

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version