Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Advances in the Environmental Performance of Polymer Capacitors

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Wk 40 Electronics Supply Chain Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Advances in the Environmental Performance of Polymer Capacitors

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Wk 40 Electronics Supply Chain Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Using and selecting COTS components for space applications

18.4.2017
Reading Time: 4 mins read
A A

source: EDN article

Rajan Bedi -April 13, 2017. For some spacecraft manufacturers, the use of commercial off-the-shelf (COTS) parts is the only option to meet the performance and cost needs of a mission. For many satellite OEMs, the price and long lead-times of fully-qualified components is simply unaffordable. Today, many COTS devices are operating successfully in-orbit and this article discusses their use and selection for space applications.

RelatedPosts

Advances in the Environmental Performance of Polymer Capacitors

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

CMOS scaling, epitaxial fabrication, the use of shallow trench isolation together with TMR HDL coding, SEU mitigation, and sensitivity classification of the configuration bitstream has allowed some ultra deep-submicron, SRAM-based COTS FPGAs to be used for low-dose, three to five-year LEO missions.

Today, several COTS flash-based FPGAs are operating successfully on-board satellites with OEMs adding EDAC and TMR to increase reliability. Their configuration memory is SEU immune and devices can be re-programmed in-orbit.

The use of COTS components must be an integrated part of the complete design process: from initial parts selection and an assessment of their suitability for use in space, how devices are handled and stored once they arrive in goods-in, and hardware design which reflects system reliability, e.g. prototyping early in the development cycle with burn-in can help weed out infant mortality failures, allowing for the use of more reliable components in their normal operating phase.

To achieve mission reliability, the location of COTS parts and sub-systems within the overall build is important and spacecraft modelling software such as TRAD’s FASTRAD can help identify areas of the satellite structure that can offer improved levels of shielding from radiation. OMERE can be freely downloaded to predict the space environment for your mission and the ANGEL software can assist to evaluate the impact of atmospheric neutrons on your space electronics. When using COTS components, it’s not devices which are being qualified but an assurance of your total engineering philosophy!

The selection of a COTS part is as much about how a component is used as the individual device itself. For example, I am currently using very successfully a fully-qualified, un-hardened DAC which was never intended for satellite applications for 15 year missions. The fabrication technology is BiCMOS, in fact, SiGe bipolar and SOI CMOS. From a process radiation hardness perspective, that’s a good start! The supplier told me that he suspected the section of the micro-architecture which synchronises the in-coming digital data was soft and I recently de-risked the DAC avoiding this timing path. The outcome is that the maximum sampling speed for space applications is less than that available for commercial users, but still high enough to satisfy all of my satellite customers. For component selection and risk assessment, using a COTS in this way is acceptable.


Figure 1 COTS DAC can be re-used in a way suitable for space applications.

Today, the commercial versions of some space-grade components contain identical die as the fully-qualified version or have slightly different die but are still fabricated on the same hardened process. This information isn’t always shared and Spacechips keeps a database of such parts to help satellite OEMs select low-cost COTS devices. The number of requests received has quadrupled in the last 18 months especially from manufacturers of ‘new space’ LEO constellations.

Most COTS parts have a plastic package which can outgas volatile materials that condense onto sensors, radiators and solar cells. Offgassing is exacerbated in the vacuum of outer space and this risk needs to be assessed on an individual mission basis. Placing the parts in a sealed (hermetic) box is one solution to limit outgassing.

Some silicon vendors offer an enhanced plastic option which are parts assured over an extended temperature range, e.g. from −55 to +125°C, where testing and characterisation accounts for glass transition effects and thermal expansion coefficients. Components can also be batch managed and typically assembled using a controlled baseline, i.e. no variation between foundries, lots, and wafers, all of which can potentially modify the hardness of components.

The above safeguards and improved traceability are very good for the space industry as changes to the fabrication technology and/or die shrink have been known to alter the radiation hardness of COTS parts. The enhanced plastic option differs between silicon vendors and it’s important that you check with your supplier as to what assurances are being offered. Many manufacturers will not guarantee the use of their COTS components for space applications, nor accept any liability.

Personally, I don’t like the marketing phrase enhanced plastic; it confuses me and implies there is something special or unique about the chemistry of the material which makes it advantageous for space applications. There’s not, and given the huge interest in the use of COTS, it would be helpful for the space industry to see consistency between the various silicon vendors. With this is mind, I’d like to propose an alternative term for such components: controlled process plastic.

Another option for you to consider is that some suppliers can up-screen COTS parts to a higher level of reliability and offer QCOTS or COTS+ components. Additional tests are carried out to address known failure mechanisms for plastic parts to identify and eliminate rejects. Recent discussions with some traditional semiconductor vendors suggest they will consider requests on a case-by-case basis and there may be some MOQ requirements. Likewise for users, there are costs associated with each assessment and a typical up-screening flow can include DPA, temperature cycling and tests for humidity, burn-in, electrical functionality, ESD, outgassing, and C-SAM to check for delamination. Formal standards exist for each of these and some are carried out on the complete lot, whereas destructive tests such as radiation testing are performed on a small sample.

Compared to fully-qualified parts, using and selecting COTS components requires careful risk assessment and their operation and/or specification may have to be modified or de-rated to meet a mission’s reliability needs. If this process is managed correctly, it is certainly possible to successfully deliver space electronics at lower cost and with shorter lead times.

Related

Recent Posts

Advances in the Environmental Performance of Polymer Capacitors

8.10.2025
2

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

8.10.2025
3

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
24

Qualification of Commercial Supercapacitors for Space Applications

1.10.2025
38

Experimental Evaluation of Wear Failures in SMD Inductors

1.10.2025
36
a Schematic diagram of the BNT-based components constructed based on the entropy-increase strategy. b Digital photograph, cross-sectional SEM image, and EDS mappings of the MLCCs. c Unipolar P-E loops of MLCCs as a function of applied E. d Wrec and η of the MLCCs as a function of applied E. The comparison of (e) Wrec and η, (f) η and UF of the MLCCs with those of other recently reported state-of-the-art MLCCs. source: Nature Communications

Researchers Proposed Enhanced Energy Storage MLCC

1.10.2025
18

Improving SMPS Performance with Thermal Interface Material

30.9.2025
12

Polymer Tantalum Capacitors Beyond AEC-Q200 LEO Satellites

30.9.2025
54

Development of Nitrogen-Doped Graphene Supercapacitors 

30.9.2025
9

Kyocera Launches New SAW Filter for GNSS 1.6GHz Satellite Communications

30.9.2025
16

Upcoming Events

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version