Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Top 10 Connector Vendors by Product Type

    Bourns Releases High‑Q Air Coil Inductors for RF Aplications

    CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

    ESA Call for Papers 6th Space Passive Component Days – SPCD 2026

    Würth Elektronik Offers Halogen‑Free EMC Gaskets for Displays and Housings

    Component Distribution Supply Chain January 2026

    Binder Unveils M8 Flange Solder Connectors for Flexible Cabling

    Power Electronics Tools for Passives and Magnetic Designs

    Modelithics Releases Component Model Library for SIMULIA CST Studio Suite

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Top 10 Connector Vendors by Product Type

    Bourns Releases High‑Q Air Coil Inductors for RF Aplications

    CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

    ESA Call for Papers 6th Space Passive Component Days – SPCD 2026

    Würth Elektronik Offers Halogen‑Free EMC Gaskets for Displays and Housings

    Component Distribution Supply Chain January 2026

    Binder Unveils M8 Flange Solder Connectors for Flexible Cabling

    Power Electronics Tools for Passives and Magnetic Designs

    Modelithics Releases Component Model Library for SIMULIA CST Studio Suite

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Vishay Releases New Generation of Automotive EMI Shielded Inductor

5.6.2024
Reading Time: 3 mins read
A A

Vishay Intertechnology releases second-generation automotive grade IHLE® inductor with integrated EMI shield in 4040 case size.

Vishay Intertechnology, Inc. (NYSE: VSH) expanded its IHLE® series of low profile, high current power inductors featuring integrated E-field shields with a new second-generation Automotive Grade device in the 10 mm by 10 mm 4040 case size.

RelatedPosts

Conductive Polymer Capacitor Market and Design‑In Guide to 2035

Vishay Extends Aluminum Capacitors Rating Up to 600 V for DC Links

Vishay Releases Fast Acting Thin Film Chip Fuses

Offering an improved shield design over previous-generation solutions, and polarity marked for more consistent EMI performance, the Vishay Dale IHLE-4040DDEW-5A lowers costs and saves board space by potentially eliminating the need for separate board-level Faraday shielding.

Compared to traditional composite inductors, the device released today contains the electric and magnetic fields associated with EMI in a tin-plated copper integrated shield. When the shield is connected to ground, the IHLE-4040DDEW-5A provides up to 20 dB reduction in radiated noise interference, and a further 6 dB reduction in magnetic flux leakage to minimize crosstalk to nearby board components. The inductor features continuous high temperature operation to +155 °C and improved operating and isolation voltage ratings of 75 V and 100 V, respectively.

The IHLE-4040DDEW-5A power inductor is optimized for energy storage in switch mode power supplies and provides excellent noise attenuation when used as a DC power line choke. AEC-Q200 qualified, the device is designed for filtering and DC/DC conversion in entertainment / navigation systems; LED drivers; and noise suppression for motors, automotive domain control units (DCU), and other noise-sensitive applications.

Packaged in a 100 % lead (Pb)-free, magnetically shielded, iron alloy encapsulant, the IHLE-4040DDEW-5A offers high resistance to thermal shock, moisture, and mechanical shock from the additional mounting support provided by its two shield terminals. The inductor is RoHS-compliant, halogen-free, and Vishay Green.

Samples and production quantities of the IHLE-4040DDEW-5A are available now, with lead times of 16 weeks.

 Low EndHigh End
Inductance @ 100 kHz (μH)0.4768
DCR typ. @ 25 °C (mΩ)1.55240
DCR max. @ 25 °C (mΩ)1.66252
Heat rating current typ. (A)(1)322.6
Saturation current typ. (A)(2)283.5
Saturation current typ. (A)(3)40.14.9
SRF typ. (MHz)32.03.5
Case size40404040
Part numberIHLE4040DDEWR47M5AIHLE4040DDEW680M5A
Device Specification
  • (¹) DC current (A) that will cause an approximate ΔT of 40 °C
  • (²) DC current (A) that will cause L0 to drop approximately 20 %
  • (3) DC current (A) that will cause L0 to drop approximately 30 %

Related

Source: Vishay

Recent Posts

Bourns Releases High‑Q Air Coil Inductors for RF Aplications

29.1.2026
9

CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

28.1.2026
18

ESA Call for Papers 6th Space Passive Component Days – SPCD 2026

28.1.2026
17

Binder Unveils M8 Flange Solder Connectors for Flexible Cabling

28.1.2026
12

Stackpole Releases AlN High‑Power Thick Film Chip Resistors

26.1.2026
17

Samsung Q4 2025 Results: MLCC focus for AI, Server and Automotive

26.1.2026
50

Würth Elektronik Developed a Custom Transformer for Active Hand Orthosis

26.1.2026
35

Capacitor Technology Dossier

26.1.2026
70

ROHM Extends 2012 Shunt Resistors Power Rating up to 1.25 W

23.1.2026
23

Upcoming Events

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version