Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Releases Automotive Molded 2220 1kV C0G MLCC

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    VINATech Offers Smallest 100µF Al-Hybrid Capacitor

    Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

    Power Inductors Future: Minimal Losses and Compact Designs

    Bourns Unveils Automotive 3 Watt Gate Driver Transformer

    Murata Opens EMC Test Lab in Nuremberg to Enhance Automotive Support

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Molex Acquires Smiths Interconnect

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Releases Automotive Molded 2220 1kV C0G MLCC

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    VINATech Offers Smallest 100µF Al-Hybrid Capacitor

    Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

    Power Inductors Future: Minimal Losses and Compact Designs

    Bourns Unveils Automotive 3 Watt Gate Driver Transformer

    Murata Opens EMC Test Lab in Nuremberg to Enhance Automotive Support

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Molex Acquires Smiths Interconnect

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Vishay Releases Resonant Transformer for LLC Applications

26.9.2022
Reading Time: 3 mins read
A A

Vishay introduced a new resonant transformer for inductor-inductor-capacitor (LLC) applications that features both the transformer and an integrated inductor in a single package.

Designed to save PCB space while simplifying layouts and reducing component mounting requirements, the 5.5 kW Vishay custom magnetics MRTI5R5EZ offers fully tunable magnetizing and leakage inductance with minimal parasitic variation.

RelatedPosts

Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

The device released today is the first transformer of its kind to utilize a second middle transformer leg to complete the resonant inductor portion of the circuit. Other implementations require an additional magnetic core to deliver the same performance. Not only does this unique construction save space, but it also simplifies designs by eliminating the need for interconnects or jumpers from the resonant inductor to the transformer’s winding.

The MRTI5R5EZ will be used in on-board chargers and half- / full-bridge resonant power supply transformers in industrial controls, solar inverters, and military, avionics, and construction equipment. In addition to providing a customizable turns ratio for these applications, the transformer’s losses can be moved from the core to the coil as needed to deliver the best performance and heat dissipation, while its minimal parasitic variation optimizes capacitor selection.

The device features operating frequencies from 100 kHz to 350 kHz, rated power from 4 kW to 6 kW with 400 V to 800 V input voltage, and rated current to 28 A. The isolation voltage rating for the MRTI5R5EZ is 2500 V. The transformer includes a bracket for cold plate mounting with raised bosses, with flush-mount options available. M4 ring terminals are standard for the transformer, with customizable lead lengths and terminal types available, and the device can be provided with a thermal gap pad on the mounting surface.

FEATURES

  • 5.5 kW transformer / inductor design for unidirectional LLC applications
  • Magnetizing and leakage inductance fully tunable
  • Turns ratio can be customized per application
  • No interconnects or jumpers needed from resonant inductor to the transformer winding
  • Operating frequencies from 100 kHz to 350 kHz
  • Designs for 400 V to 800 V inputs
  • Bracket included for cold plate mounting with raised bosses (flush mount options available)
  • Minimal parasitic variation optimizes capacitor selection
  • Built in voltage isolation elevates corona inception
  • Designed for cold plate cooling at 65 °C to 75 °C
  • Lead lengths and terminal types can be easily customized
  • Can be provided with thermal gap pad on mounting surface
  • MRTI design: patent pending

APPLICATIONS

  • Charging power supplies for 400 V / 600 V batteries
  • Unidirectional LLC converters from 4 kW to 6 kW
  • Industrial control, alternative energy, military, avionic, and construction equipment

Samples and production quantities of the MRTI5R5EZ are available now, with lead times of four weeks for samples and 16 to 20 weeks for production quantities.

Related

Source: Vishay

Recent Posts

How to Select Ferrite Bead for Filtering in Buck Boost Converter

23.10.2025
26

VINATech Offers Smallest 100µF Al-Hybrid Capacitor

23.10.2025
27

Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

23.10.2025
4

Power Inductors Future: Minimal Losses and Compact Designs

22.10.2025
30

Bourns Unveils Automotive 3 Watt Gate Driver Transformer

22.10.2025
7

Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

21.10.2025
30

Murata Integrates Component Models into Cadence EDA Tools

21.10.2025
38

Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

20.10.2025
12

September 2025 ECIA US Components Sales Sentiment Continues in Optimism

20.10.2025
19

Bourns Release Automotive 4-Terminal Shunt Resistors

17.10.2025
21

Upcoming Events

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

Oct 30
11:00 - 12:00 CET

Space Ceramic Capacitors with Flexible Testing

Nov 4
10:00 - 11:00 PST

Design and Stability Analysis of GaN Power Amplifiers using Advanced Simulation Tools

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version