Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Researchers Enhanced 2D Ferromagnets Performance

    Bourns Releases Two High Current Common Mode Choke Models

    Electronics Weekly Announcing Finalists for Elektra Awards 2025

    Exxelia Exhibit at Electronica India September 17–19, 2025

    Würth Elektronik Announces 2025 Digital WE Days Virtual Conference

    VINATech Unveils Hybrid Energy Storage System to Revolutionize Grid Stability and Power Delivery

    SCHURTER Releases High Performance EV-Fuse

    Panasonic Industry to Double Production of MEGTRON PCB Materials

    5th PCNS Awards Outstanding Passive Component Papers

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Researchers Enhanced 2D Ferromagnets Performance

    Bourns Releases Two High Current Common Mode Choke Models

    Electronics Weekly Announcing Finalists for Elektra Awards 2025

    Exxelia Exhibit at Electronica India September 17–19, 2025

    Würth Elektronik Announces 2025 Digital WE Days Virtual Conference

    VINATech Unveils Hybrid Energy Storage System to Revolutionize Grid Stability and Power Delivery

    SCHURTER Releases High Performance EV-Fuse

    Panasonic Industry to Double Production of MEGTRON PCB Materials

    5th PCNS Awards Outstanding Passive Component Papers

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Non-Magnetic Capacitors and Trimmers for MRI Machines

7.11.2023
Reading Time: 3 mins read
A A

This article based on Knowles Precision Devices blog provides overview of magnetic resonance imaging (MRI) systems and their needs for non-magnetic components such as trimmers or MLCC ceramic capacitors.

MRI systems are so robust and require so much infrastructure that they need their own dedicated room—until recently.

RelatedPosts

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

Knowles Releases Inductors for Mission-Critical RF Applications

Learn How Supercapacitors Enhance Power System in Knowles eBook

A portable magnetic resonance imaging (MRI) system, or point of care (POC) MRI machine, is a compact, traveling device that’s designed for patient imaging outside of the traditional MRI suite (e.g., emergency rooms, ambulances, rural clinics, field hospitals, etc.)

To best perform in these settings, POC MRI machines are subject to strict size and weight constraints. Like traditional MRI systems, POC MRIs leverage powerful magnets, but here, they’re much smaller. For example, most MRI systems rely on magnets ranging from 1.5T to 3T. In contrast, Hyperfine’s new POC MRI machine features a 0.064T magnet.

While many specifications change when MRI machines are designed for portability, these devices are still expected to provide accurate, clear images in a safe manner. Designing for reliability remains a central objective, and it starts with the smallest components in the system.

Non-Magnetic Trimmers and MLCCs for POC MRI Machines 

Non-magnetic capacitors, particularly trimmer capacitors, are essential in POC MRI machines because they accommodate precise control of the radio frequency (RF) coil’s resonant frequency and impedance, which determines the machine’s sensitivity to RF pulses and signals. In the low noise amplifier (LNA), an essential component in the receiver chain, capacitors are responsible for ensuring optimal performance and enhancing signal quality, and by extension, image quality.

Knowles Precision Devices offers an extensive line of non-magnetic components for MRI applications, including:

Non-Magnetic Trimmer Capacitors

Many of our trimmers are available in a non-magnetic format. Using the same closely controlled material designations as our magnetic hardware, these components exhibit no measurable magnetism. 

High Q Non-Magnetic Capacitors

For minimal power loss and low self-heating, Knowles Precision Devices offers a range of ultra-low loss High Q ceramic capacitors with C0G/NP0 characteristics. These capacitors are uniquely suited for MRI body coils and are available with copper electrode BME materials if needed.

All Non-Magnetic SMD Capacitors

Our MLCC capacitors with silver/palladium (Ag/Pd) or copper terminations are designed for magnetically sensitive environments where traditional solutions with magnetic properties (e.g., nickel barrier terminations) won’t suffice. 

Design Guidance

Knowles Precision Devices is a trusted source for non-magnetic trimmer capacitors and MLCCs. As MRI system design changes and the engineering challenges evolve, we’re here to help you select the right components to bring your ideas to life—big or small. See Trimmer Capacitor Considerations in Practice for more information on component-specific design considerations. 

Related

Source: Knowles Precision Devices

Recent Posts

Electronics Weekly Announcing Finalists for Elektra Awards 2025

16.9.2025
3

Exxelia Exhibit at Electronica India September 17–19, 2025

15.9.2025
20

Würth Elektronik Announces 2025 Digital WE Days Virtual Conference

15.9.2025
10

VINATech Unveils Hybrid Energy Storage System to Revolutionize Grid Stability and Power Delivery

15.9.2025
8

5th PCNS Awards Outstanding Passive Component Papers

14.9.2025
34

TDK Releases Ultra-small PFC Capacitors

10.9.2025
31

KYOCERA AVX Releases Novel Mini BME Stacked Ceramic Capacitors

10.9.2025
25

Vishay Releases Class 1 Leaded High Voltage Ceramic Disc Capacitors

10.9.2025
17

TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

5.9.2025
30

Samsung MLCCs Lineup for In-Vehicle Infotainment

4.9.2025
33

Upcoming Events

Sep 16
20:00 - 21:00 CEST

Reduce SMT Parasitic Design Failures with Innovative Filter Topologies

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version