Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samtec Expands Connector Severe Environment Testing Offering

    Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

    YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

    Enhancing Energy Density in Nanocomposite Dielectric Capacitors

    Advances in the Environmental Performance of Polymer Capacitors

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samtec Expands Connector Severe Environment Testing Offering

    Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

    YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

    Enhancing Energy Density in Nanocomposite Dielectric Capacitors

    Advances in the Environmental Performance of Polymer Capacitors

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Surface Mount Capacitors for DC-DC Converter Applications

20.12.2023
Reading Time: 6 mins read
A A

This article written by Naotaka Hata, KYOCERA-AVX Corporation provides SMD capacitor technologies benchmark in DC-DC converter applications. This whitepaper outlines the critical distinctions between these various capacitors, the applications that each capacitor type tends to be suitable for, and finishes with a discussion of capacitor requirements as related to DC-DC converters.

Tantalum, polymer, ceramic, film, and aluminum capacitors each offer a different set of operating and performance characteristics.

RelatedPosts

Kyocera Launches New SAW Filter for GNSS 1.6GHz Satellite Communications

KYOCERA AVX Capacitors in AI Systems

KYOCERA AVX Releases Novel Mini BME Stacked Ceramic Capacitors

Choosing the proper capacitor when designing DC-DC converters requires a careful understanding of these differences. High voltage front-end connections to the power source typically rely on aluminum capacitors, while intermediate step-down voltages often look towards the tantalum and ceramic families to take advantage of volumetric efficiency.

The final load decoupling and bypass capacitors are generally found in the ceramic and film families.

Types of SMD Capacitors

Surface mount (SMD) capacitors can be constructed using several different technologies to achieve a range of voltage tolerance, bulk capacitance, and parasitic device characteristics. As shown in Figure 1, these technologies can be roughly broken down between ceramic, film, tantalum electrolytic, and aluminum electrolytic with varying degrees of application overlap.

It is the job of the circuit designer to select from these capacitor families for a particular application, keeping in mind that multiple capacitors can be combined in series or parallel to achieve their goals. These goals may also include environmental performance, reliability benchmarks, and physical form-factor attributes.

Figure 1: Capacitor technologies landscape based on voltage and bulk capacitance

Ceramic Capacitors

Multilayer ceramic capacitors (MLCC) have many advantages in modern electronic design, including small size, high withstand voltage, and long service life. They have become the first choice of engineers for most common bulk capacitance needs, including precision filters, resonators, power supply bypass devices, and decoupling elements. KYOCERA AVX offers a broad range of SMD ceramic capacitors, including the unique Flexiterm and Flexisafe technologies for enhanced safety and reliability.

Film Capacitors

Film capacitors came of age due to advancements in the polymer industry that enabled the metallization of thin plastic dielectrics. These capacitors can be divided into several families based on their application power requirements. On the low end of the spectrum, small surface mount chip capacitors are available in three common dielectrics: metalized Polyethylene Naphtalate (PEN), metalized Polyethylene Terephtalate (PET-HT), and metalized polyphenylene sulfide (PPS). These devices have become ubiquitous on PCBs for various functions, including decoupling, smoothing, filtering, and impedance matching. KYOCERA AVX offers SMD film capacitors with superior features such as high voltage withstanding, low ESR, and no DC bias dependency.

Tantalum Capacitors

Tantalum capacitors are regarded highly in the electrolytic family for their large capacitance per unit volume and generally stable operating parameters. They exhibit self-healing properties and typically provide low electrical series resistance (ESR) with favorable AC impedance characteristics. For these reasons, the two primary applications of tantalum capacitors in circuit design have been as high capacity energy storage elements and as ripple filtering components in power supplies. KYOCERA AVX has been the leading supplier of tantalum capacitors for many years. Their portfolio covers various applications and markets and provides the highest capacitance for limited space (area/height) applications.

Polymer Tantalum Capacitors

Compared to conventional tantalum capacitors based on MnO2 electrolyte, conductive tantalum polymer capacitors have greatly improved conductivity, leading to a significant reduction in ESR through the entire operating frequency range and high ripple current. In addition, the polymer capacitor exhibits a unique self healing mechanism. Dielectric failures result in a high current path that evaporates/carbonizes the polymer material and encapsulates the failure location with a non-conductive polymer layer. The polymer material does not contain any oxygen, unlike MnO2 technology, and is non-flammable. As a result, polymer capacitors are more reliable, safer, and less sensitive to inrush current and higher ripple current limits.

Aluminum Capacitors

As of 2021, KYOCERA AVX has added aluminum electrolytic capacitors to its product lineup. Table 1 explores the differences between the electrolytic (AEA/AEH series), hybrid (AHA/AHC series), and polymer (APA/APD series). It summarizes the strengths and weaknesses of aluminum, polymer aluminum, and hybrid aluminum electrolytic capacitors. In general, traditional aluminum electrolytic devices offer the lowest cost, smallest form factor option. When other parameters are critical to a design, tradeoffs can be made with hybrid and polymer devices to achieve a longer lifetime, reduced parasitics, and environmental tolerance, to name a few examples.

Table 1: A comparison of aluminum capacitor families

Capacitor Requirements for DC-DC Converters

DC-DC converters are often integrated into systems with numerous voltage domains. In the example (Figure 2), the high voltage source is first converted to an intermediate voltage to reduce the input range requirements of the downstream converters. This step will often use a buck converter to maximize efficiency and reduce thermal stress. The resulting intermediate voltage is then converted using a combination of buck, boost, and linear regulators to the specific voltages required for each subsystem.

Figure 2: The three voltage and capacitance zones for typical DC-DC converters

In the high voltage domain (i.e., 48V), aluminum capacitors are the first choice in most cases. Bulk capacitance and input voltage tolerance are the two most important parameters. In applications with a height restriction, parallel MLCC devices may also be used. In the intermediate voltage domain (i.e., 5V/12V/24V), aluminum capacitors may still be the best option if there is no height restriction. However, more commonly, tantalum/polymer and MLCC are selected to achieve the smallest PCB volume.

In the low voltage domain (i.e., 1-2V), ceramic and film capacitors are the most suitable solution, especially when the switching frequency is higher than a few megahertz. If high bulk capacitance is required, tantalum/polymer can be used to minimize component count and reduce PCB volume.

Conclusion

Figure 3 summarizes the key capacitor technologies suitable for DC-DC converter applications. Depending on the individual application requirements, appropriate devices can be chosen based on bulk capacitance, voltage range, form factor, and price, to name a few parameters.

Figure 3: Five key SMD capacitor technologies benchmark; source: KYOCERA AVX

Related

Source: KYOCERA AVX

Recent Posts

Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

10.10.2025
12

Enhancing Energy Density in Nanocomposite Dielectric Capacitors

9.10.2025
16

Advances in the Environmental Performance of Polymer Capacitors

8.10.2025
35

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

8.10.2025
19

Paumanok Releases Capacitor Foils Market Report 2025-2030

7.10.2025
17

Modelithics Welcomes CapV as a Sponsoring MVP

7.10.2025
4

Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

3.10.2025
23

Electrolyte Selection and Performance in Supercapacitors

3.10.2025
33

Connector PCB Design Challenges

3.10.2025
36

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
25

Upcoming Events

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version