Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Common Mistakes in Flyback Transformer Specs

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Stackpole Extends Voltage of High Temp Chip Resistors

    High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Common Mistakes in Flyback Transformer Specs

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Stackpole Extends Voltage of High Temp Chip Resistors

    High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Vishay Extended Shielded and Semi-Shielded Ferrite Inductors

7.8.2024
Reading Time: 3 mins read
A A

Vishay Intertechnology, Inc. announced that it has extended its shielded IFDC and semi-shielded IFSC series of wirewound, surface-mount ferrite inductors with three new devices in the 2020DE, 3232DB, and 5050HZ case sizes.

Offering improved performance at a lower cost than previous-generation ferrite solutions, the Vishay Dale inductors combine higher inductance and current ratings with lower DCR for computer and consumer applications.

RelatedPosts

Vishay Releases Miniature SMD Trimmers for Harsh Environments

Vishay Releases High Saturation 180C Automotive Inductors

Vishay NTC Immersion Thermistor Delivers Fast Response in Liquid Cooled Automotive Systems

The IFDC-5050HZ, IFSC-2020DE-01, and IFSC-3232DB-01 match the performance of previous-generation ferrite core solutions — but with a 60 % smaller size — while offering enhanced performance compared to similar-sized devices, including higher operating temperatures to +125 °C and operating voltages of 120 V. Additionally, the IFSC-2020DE-01 and IFSC-3232DB-01 feature 40 % lower DCR, while the IFDC-5050HZ supports higher saturation currents up to 14 A.

While other high-performance inductors typically offer a maximum inductance of 100 mH, the devices released today achieve significantly higher values of 470 mH for the IFSC-2020DE-01 and IFSC-3232DB-01 and 1 mH for the IFDC-5050HZ. Furthermore, by utilizing efficient manufacturing techniques and a simple bobbin style wirewound construction, IFSC and IFDC series inductors provide a more cost-effective solution over IHLP inductor technology while still delivering high quality and reliability

With the enhanced efficiency enabled by their low loss ferrite core construction and low DCR, the devices are ideal for use as energy storage inductors in a variety of DC/DC conversion topologies found in consumer electronics and battery-powered devices. Moreover, the IFSC and IFDC families make cost-effective solutions in differential LC filter topologies for noise suppression on power lines. Focus markets include consumer entertainment devices such as televisions, sounds bars, and audio and gaming systems; general computing equipment such as desktops, monitors, and scanners; as well as other household appliances. In these applications, the IFDC-5050HZ — which features a coil enclosed in an exterior magnetic material that contains stray magnetic flux — minimizes EMI and crosstalk to nearby components.

Device Specifications

Part numberIFSC-2020DE-01IFSC-3232DB-01IFDC-5050HZ
ShieldingSemi-shieldedSemi-shieldedShielded
Size (mm)6.0 x 6.0 x 4.58.0 x 8.0 x 4.212.3 x 12.3 x 8.0
Inductance (mH)1 to 4700.9 to 1003.3 to 1000
DCR typ. (mW)14 to 20006 to 29011 to 1640
Heat rating current (A)0.35 to 4.21 to 7.80.9 to 10.3
Saturation current (A)(1)0.4 to 8.51 to 110.9 to 14
SRF typ. (MHz)2 to 1106 to 851.3 to 35
(1)DC current (A) that will cause L0 to drop approximately 30 %

Samples and production quantities of the IFSC and IFDC inductors are available now, with lead times of 10 to 12 weeks.

Related

Source: Vishay

Recent Posts

Common Mistakes in Flyback Transformer Specs

15.8.2025
2

Vishay Releases Miniature SMD Trimmers for Harsh Environments

14.8.2025
7

Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

13.8.2025
5

Stackpole Extends Voltage of High Temp Chip Resistors

13.8.2025
7

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
46

Bourns Releases High Power High Ripple Chokes

8.8.2025
25

KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

8.8.2025
9

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

7.8.2025
31

Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

6.8.2025
34

Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

6.8.2025
9

Upcoming Events

Aug 27
17:00 - 18:00 CEST

Capacitor Assemblies for High-Power Circuit Designs

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version