Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

    Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

    Vishay Releases High Saturation 180C Automotive Inductors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Bourns Unveils High Reliability Compact Micro Encoders

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

    Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

    Vishay Releases High Saturation 180C Automotive Inductors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Bourns Unveils High Reliability Compact Micro Encoders

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Würth Elektronik Releases High Performance TLVR Coupled Inductors

15.5.2025
Reading Time: 2 mins read
A A

Würth Elektronik introduces its WE-HCMD (High Current Multiphase Dual) high-current inductor, specially developed for use in TLVR (Trans-Inductor Voltage Regulator) topologies.

This coil with MnZn core is characterized by its high permeability and extremely low DCR values.

RelatedPosts

Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

So, it achieves excellent power density and very high efficiency. In the finished device, it excels with its fast transient response and low voltage drop.

The new component also reduces application costs and saves space, as it allows for a smaller nominal output capacitor.

When designing power supplies for processors today, developers are confronted with increasingly high and significantly varying load transients – for example, in FPGAs used in AI applications.

The innovation in TLVRs in this field calls for a new generation of components that achieve consistent efficiency even at high temperatures. Optimal efficiency is key here and must be ensured even at the highest currents. The selection of materials for the new inductor significantly improves efficiency and allows the potential of the new TLVR topology to be fully exploited.

WE-HCMD is ideal for TLVR applications that are specifically designed for sudden load transients. Areas of application for the coupled inductor include multiphase voltage regulators for CPU motherboards, FPGAs, GPUs, AI chips, servers, or high-power ASIC applications.

Dependable up to 125°C

The WE-HCMD family from Würth Elektronik offers coupled inductors with a coupling factor of up to 0.98 and an inductance range from 70 nH to 200 nH. The saturation current goes up to 190 A at a rated current of 78 A. The internal resistance is just 0.125 mΩ. The inductor is designed for operating temperatures up to 125°C.

Maximum efficiency and inductance stability

Internal measurements show that at the high-temperatures resulting from heavy loads, significantly better stability is achieved than for existing solutions on the market. In direct comparison, the inductor stands out through its superior current-dependent inductance stability as well as higher efficiency.

The family of SMT-mountable high-current inductors for TLVR applications includes four versions in a 0910 package and six in a 1111 package. WE-HCMD is now available from stock without a minimum order quantity. Free samples can be requested.

Related

Source: Würth Elektronik
Via: https://www.we-online.com/en/news-center/press?instance_ID=5506&d=WE-HCMD

Recent Posts

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

7.8.2025
4

Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

6.8.2025
11

Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

6.8.2025
6

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

6.8.2025
8

Vishay Releases High Saturation 180C Automotive Inductors

6.8.2025
8

SCHURTER Releases Chip Fuse for ATEX and Precision Applications

4.8.2025
8

SCHURTER Introduces Reliable Arc-Free Switching Technology

4.8.2025
3

Additive Manufacturing of Mn-Zn Ferrite Planar Inductors

4.8.2025
10

PCNS 2025 Final Program Announced!

4.8.2025
62

TDK Announced Wide Frequency Automotive Wirewound POC Inductors

30.7.2025
35

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version