Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Inductor Resonances and its Impact to EMI

    Developing Low Inductance Film Capacitor using Bode 100 Analyzer

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Würth Elektronik Releases High Performance TLVR Coupled Inductors

    YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

    Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

    Littelfuse Releases Industry-First SMD Fuse with 1500A Interrupting Rating at 277V

    TDK Unveils Industry Highest Rated Current Multilayer Chip Beads

    Vishay Releases Automotive SMD Thick Film Power Resistor for Enhanced Protection Against Short Transient Pulses

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Inductor Resonances and its Impact to EMI

    Developing Low Inductance Film Capacitor using Bode 100 Analyzer

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Würth Elektronik Releases High Performance TLVR Coupled Inductors

    YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

    Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

    Littelfuse Releases Industry-First SMD Fuse with 1500A Interrupting Rating at 277V

    TDK Unveils Industry Highest Rated Current Multilayer Chip Beads

    Vishay Releases Automotive SMD Thick Film Power Resistor for Enhanced Protection Against Short Transient Pulses

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Flat Cable Harness for Space Launcher Applications

26.2.2025
Reading Time: 7 mins read
A A

This paper presents Flat Conductor Cable Continuous technology as the most economical solution for launcher harnesses. Florent Todeschini, from ArianeGroup (Les Mureaux, France), presented this during the 5th Space Passive Component Days (SPCD), an International Symposium held from October 15th to 18th, 2024, at ESA/ESTEC in Noordwijk, the Netherlands. Published under permission from ESA SPCD organizers.

Summary

RelatedPosts

High-Density PCB Assemblies For Space Applications

Solid State Polymer Multilayer Capacitors For High Temperature Application

Graphene-Based BOSC Bank Of Supercapacitor Cells

The ESA-supported project “Improved Design of Harness for Launcher” aims to reduce the mass, volume, and cost of space launcher electrical harnesses.

The project focuses on flat cabling as a potential solution, comparing it to traditional round cable solutions. 

The project involves the design and manufacturing of scale mockups for two harness use cases, with a focus on ease of integration, manufacturability, volume, mass, and electrical testing.

A trade-off process identified the Flat Conductor Cable Continuous technology as the most cost-effective solution for launcher harnesses, leading to the development of a flat cable conductor and connector (see Table 1.). The harness design prioritized minimizing installation footprint, organizing cables by function, and optimizing shielding and segregation to reduce noise pollution.  The redesigned harnesses for internal inter-tank and external raceway applications demonstrated significant mass savings and reduced integration time.

Table 1. Cable technology launcher harness trade-off analyses

A design process was implemented to replace traditional raceway harnesses with a single element composed of two flat parallel harnesses. This redesign aimed to minimize aerothermal impact, optimize volume allocation, and achieve mass savings. The feasibility of the design was validated through manufacturing small derisking specimens and testing the composite integration process.

Figure 1. Use cases of the FCC Flat Conductor Cable

A project developed under ESA Contract No. 4000130437/20/NL/FE successfully demonstrated the potential of Flat Flexible Cable (FFC) technologies in space and launcher applications. The project introduced several key enabling technologies, including a standardized flat cable definition, a dedicated connector, and shielding options for flat cables.  The use of FFC technology offers significant advantages, such as simplified design, automated manufacturing, reduced integration effort, and potential mass and volume savings.

The shielding of spacecraft cables will be improved by increasing contact pressure, characterizing transfer impedance, and enhancing external shielding. Additionally, a protective sheet will be developed for areas prone to thermal or mechanical friction.

CONCLUSIONS AND PERSPECTIVES 

The project developed under ESA Contract No. 4000130437/20/NL/FE has proven the potential of Flat Flexible Cable technologies to be used in different Space/Launcher applications. 

This project has brought several key enabling technologies that were not existing so forth at a European level: 

  • A standardized flat cable definition 42 mm wide, polyimide isolated, with 8 copper plain conductors with gauges extending from AWG18 to 22. 
  • A dedicated connector, rectangular, 16 contacts gauge AWG16, capable of interconnecting one or two superposed flat cables and with a backshell fixture allowing to assure the electrical continuity of the connector with the shielding (based on Axon Versatys ®). 
  • The possibility of shielding one or two superposed flat cables with a continuous copper sheet placed on both sides. 
  • A proof of concept on a realistic internal inter-tank Launcher cabling, allowing to demonstrate the possibilities of the harnessing based on flat cabling (rooting including bending). 
  • A proof of concept on a realistic external Launcher raceway, including composite multi-functional integration of mechanical and thermal protection. 

The main improvements brought by the use of the flat cabling technology are depicted herein: 

  • Design: The design of flat cabling structures, considering allocation of signals is simple and straightforward. It is easy to understand where a specific electrical signal has been mapped in terms of position in the harness. The stacking also allows to include late connection needs. No specific design issue has been encountered during the design activities of both mockups. Furthermore, from our perspective, the flat cabling design process can help reduce time delivery of harness as the allocation of signals to the harnessing is more straightforward A design possibility to speed up the development time can be to pre-allocate a certain number of flat cables to the main communication paths, and then affect progressively the necessary signals to the different connectors/contacts. In case of late design needs, it is easy to add a flat cable to the stacking as is does not modify the need of new supporting brackets. This way of working might need to adapt the engineering approach at Launcher system level with an impact on the current way of specifying through internal design rules which should be adapted to this technology. There is a priori no limitation of the technology in terms of on time delivery. 
Figure 2. Intertank design FCC us example
  • Manufacturing: The manufacturing of the harness can be almost fully automated which allows to guarantee quality and cut costs. The manufacturing of the composite over-molding is based on well know processes and allows to incorporate extra functions to the harness (i.e. mechanical and thermal protection). 
  • Integration: The integration effort is mainly reduced by the fact that the harnessing footprint is minimized at launcher level, requiring a reduced set of brackets. 
  • Test and troubleshooting: As already stated on the previous point ‘Design’, the fact of knowing the exact position of allocated signals, shall allow to ease system tests where the identification of specific signals is always cumbersome and time-consuming. The same reasoning is applied for troubleshooting and system level: the concerned link can quickly be determined and the study of the anomaly root cause eased. 
  • Volume allocation: The volume allocated to harnessing is drastically reduced. The rough estimates of the project point out to >70% savings. This level could be increased on specific applications where the harness may be completely over molded on sandwich panels (i.e., in upper parts charge adaptors, satellite dispenser or directly on payload satellites). 
  • Mass allocation: The overall mass estimated of the project point out potential mass reductions in the frame of 30-70 %. This is mainly due to the rationalization of mechanical supports/protections devoted to integration. 

The perspectives that we observe for the technology proposed are the following: 

  • For the harnessing technology: Enhance the electrical continuity between the backshell and the shielding, maybe providing a gasket of the exit zone of the backshell or another blocking mechanism allowing to assure a contact pressure between the shielding and the backshell. 
  • Characterize the final transfer impedance of the shielding on dedicated samples (~20 cm-to 1 m long). 
  • Assess, with a vaster sampling, the isolation provided by the clipping mechanism that interconnects the contacts to the flat cable. 
  • Increase the quality of the external shielding, particularly on the junctions zones between the upper and the lower sides. 
  • Provide an external protective sheet, easy to deploy, to protect the cabling on specific zones where thermal or mechanical friction could arm the cabling. 
  • For the composite process: Demonstrate the capabilities of complete integration on sandwich structural panels used on spacecraft construction. 
  • Develop and validate the associated mechanical and electrical justification scheme. 

See details in the full paper:

ARIANE France_Flat_Cable_Harness_LauncherDownload

Related

Source: ESA SPCD

Recent Posts

Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

15.5.2025
13

Vishay Releases Automotive SMD Thick Film Power Resistor for Enhanced Protection Against Short Transient Pulses

14.5.2025
8

Exxelia Power Film Capacitors Support Critical Systems Across Various Industries

13.5.2025
22

Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

9.5.2025
7

KYOCERA AVX Releases Compact High-Directivity Couplers

7.5.2025
24

Tariffs Crush Sales Sentiment in April 2025 ECST Results

5.5.2025
81

High-Density PCB Assemblies For Space Applications

2.5.2025
13

Solid State Polymer Multilayer Capacitors For High Temperature Application

2.5.2025
45

Graphene-Based BOSC Bank Of Supercapacitor Cells

2.5.2025
20

W-band Self-Biased Circulators for Next Gen VHTS Satellites

1.5.2025
4

Upcoming Events

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Developing Low Inductance Film Capacitor using Bode 100 Analyzer

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • What is the Difference Between X8G, X8L and X8R Ceramic Capacitor Dielectrics?

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version